9.8 KiB
comments |
---|
true |
哈希表
哈希表通过建立「键 key」和「值 value」之间的映射,实现高效的元素查找。具体地,输入一个 key ,在哈希表中查询并获取 value ,时间复杂度为 O(1)
。
例如,给定一个包含 n
个学生的数据库,每个学生有 "姓名 name
” 和 “学号 id
” 两项数据,希望实现一个查询功能:输入一个学号,返回对应的姓名,则可以使用哈希表实现。
Fig. 哈希表抽象表示
哈希表优势
除了哈希表之外,还可以使用以下数据结构来实现上述查询功能:
- 无序数组: 每个元素为
[学号, 姓名]
; - 有序数组: 将
1.
中的数组按照学号从小到大排序; - 链表: 每个结点的值为
[学号, 姓名]
; - 二叉搜索树: 每个结点的值为
[学号, 姓名]
,根据学号大小来构建树;
使用上述方法,各项操作的时间复杂度如下表所示(在此不做赘述,详解可见 二叉搜索树章节)。无论是查找元素、还是增删元素,哈希表的时间复杂度都是 O(1)
,全面胜出!
无序数组 | 有序数组 | 链表 | 二叉搜索树 | 哈希表 | |
---|---|---|---|---|---|
查找元素 | O(n) |
O(\log n) |
O(n) |
O(\log n) |
O(1) |
插入元素 | O(1) |
O(n) |
O(1) |
O(\log n) |
O(1) |
删除元素 | O(n) |
O(n) |
O(n) |
O(\log n) |
O(1) |
哈希表常用操作
哈希表的基本操作包括 初始化、查询操作、添加与删除键值对。
=== "Java"
```java title="hash_map.java"
/* 初始化哈希表 */
Map<Integer, String> map = new HashMap<>();
/* 添加操作 */
// 在哈希表中添加键值对 (key, value)
map.put(12836, "小哈");
map.put(15937, "小啰");
map.put(16750, "小算");
map.put(13276, "小法");
map.put(10583, "小鸭");
/* 查询操作 */
// 向哈希表输入键 key ,得到值 value
String name = map.get(15937);
/* 删除操作 */
// 在哈希表中删除键值对 (key, value)
map.remove(10583);
```
=== "C++"
```cpp title="hash_map.cpp"
```
=== "Python"
```python title="hash_map.py"
```
=== "Go"
```go title="hash_map.go"
```
=== "JavaScript"
```js title="hash_map.js"
```
=== "TypeScript"
```typescript title="hash_map.ts"
```
=== "C"
```c title="hash_map.c"
```
=== "C#"
```csharp title="hash_map.cs"
```
遍历哈希表有三种方式,即 遍历键值对、遍历键、遍历值。
=== "Java"
```java title="hash_map.java"
/* 遍历哈希表 */
// 遍历键值对 key->value
for (Map.Entry <Integer, String> kv: map.entrySet()) {
System.out.println(kv.getKey() + " -> " + kv.getValue());
}
// 单独遍历键 key
for (int key: map.keySet()) {
System.out.println(key);
}
// 单独遍历值 value
for (String val: map.values()) {
System.out.println(val);
}
```
=== "C++"
```cpp title="hash_map.cpp"
```
=== "Python"
```python title="hash_map.py"
```
=== "Go"
```go title="hash_map.go"
```
=== "JavaScript"
```js title="hash_map.js"
```
=== "TypeScript"
```typescript title="hash_map.ts"
```
=== "C"
```c title="hash_map.c"
```
=== "C#"
```csharp title="hash_map.cs"
```
哈希函数
哈希表中存储元素的数据结构被称为「桶 Bucket」,底层实现可能是数组、链表、二叉树(红黑树),或是它们的组合。
最简单地,我们可以仅用一个「数组」来实现哈希表。首先,将所有 value 放入数组中,那么每个 value 在数组中都有唯一的「索引」。显然,访问 value 需要给定索引,而为了 建立 key 和索引之间的映射关系,我们需要使用「哈希函数 Hash Function」。
设数组为 bucket
,哈希函数为 f(x)
,输入键为 key
。那么获取 value 的步骤为:
- 通过哈希函数计算出索引,即
index = f(key)
; - 通过索引在数组中获取值,即
value = bucket[index]
;
以上述学生数据 key 学号 -> value 姓名
为例,我们可以将「哈希函数」设计为
f(x) = x \% 100
Fig. 哈希函数
=== "Java"
```java title="array_hash_map.java"
/* 键值对 int->String */
class Entry {
public int key; // 键
public String val; // 值
public Entry(int key, String val) {
this.key = key;
this.val = val;
}
}
/* 基于数组简易实现的哈希表 */
class ArrayHashMap {
private List<Entry> bucket;
public ArrayHashMap() {
// 初始化一个长度为 100 的桶(数组)
bucket = new ArrayList<>();
for (int i = 0; i < 100; i++) {
bucket.add(null);
}
}
/* 哈希函数 */
private int hashFunc(int key) {
int index = key % 100;
return index;
}
/* 查询操作 */
public String get(int key) {
int index = hashFunc(key);
Entry pair = bucket.get(index);
if (pair == null) return null;
return pair.val;
}
/* 添加操作 */
public void put(int key, String val) {
Entry pair = new Entry(key, val);
int index = hashFunc(key);
bucket.set(index, pair);
}
/* 删除操作 */
public void remove(int key) {
int index = hashFunc(key);
// 置为空字符,代表删除
bucket.set(index, null);
}
}
```
=== "C++"
```cpp title="array_hash_map.cpp"
```
=== "Python"
```python title="array_hash_map.py"
```
=== "Go"
```go title="array_hash_map.go"
```
=== "JavaScript"
```js title="array_hash_map.js"
```
=== "TypeScript"
```typescript title="array_hash_map.ts"
```
=== "C"
```c title="array_hash_map.c"
```
=== "C#"
```csharp title="array_hash_map.cs"
```
哈希冲突
细心的同学可能会发现,哈希函数 f(x) = x \% 100
会在某些情况下失效。具体地,当输入的 key 后两位相同时,哈希函数的计算结果也相同,指向同一个 value 。例如,分别查询两个学号 12836 和 20336 ,则有
f(12836) = f(20336) = 36
两个学号指向了同一个姓名,这明显是不对的,我们将这种现象称为「哈希冲突 Hash Collision」,其会严重影响查询的正确性。如何避免哈希冲突的问题将被留在下章讨论。
Fig. 哈希冲突
综上所述,一个优秀的「哈希函数」应该具备以下特性:
- 尽量少地发生哈希冲突;
- 时间复杂度
O(1)
,计算尽可能高效; - 空间使用率高,即 “键值对占用空间 / 哈希表总占用空间” 尽可能大;
常用哈希函数
下面介绍两种常见的哈希类型,数字哈希和字符串哈希。
数字哈希
对于需要将数字哈希化的场景,常采用对大质数取模的方式作为哈希函数以此来减少冲突。若用 N
来表示所选取的大质数,则哈希函数 f(x)
可表达为
f(x) = (x (\mod N) + N)(\mod N)
该函数在第一次取模后还有一次加 N
的操作是因为在某些编程语言如 C/C++ 中负数取模会得到负数,这与数学中的取模运算定义不同(数学定义中无论正负数取模的结果均为正数)。另外,我们常常将取模后的值作为数组中的索引,这样正数也能保证数组索引的正确性。
大质数的选择取决于你希望哈希后的长度,若一堆数字你希望哈希后分布在 0-n
之间,则 N
选择大于 n
的大质数即可。选择算法示例如下:
=== "C"
```c title="prime_num_sel.c"
int main() {
for (int i = 1000; ;i++) {
int flag = 0;
for (int j = 2; j < i; j++) {
if (i % j == 0) {
flag = 1;
break;
}
}
if (flag == 0) {
printf("the prime number is %d", i);
break;
}
}
return 0;
}
```
字符串哈希
这里介绍一种被称作“字符串前缀哈希”的算法来实现字符串的哈希化。若有一字符串 str = "abcedacbd"
,则哈希表中的元素表示从左边起到第 i
个位置上的子字符串的哈希值。即,f(1) -> "a"; f(2) -> "ab"; f(3) -> "abc"
,以此类推。
具体过程如下
- 将字符串存储在下标为
1
的char
数组中; - 计算字符串的前缀数字,将他们哈希化,将字符串看作是一个
P
进制数,这里P = 131
或者P = 13331
。按照经验,这两个值对字符串哈希会产生非常小的冲突可能。 - 将这个
P
进制数转换为10进制,通常转换出来的数字会很大,则将其对Q
取模。这样任意一个字符串都可以转换成0 \cdots Q - 1
之间的数字:(1234)_P => (1 * P^3 + 2 * P^2 + 3 * P^1 + 4 * P^0) \mod Q
- 对于
Hash
函数,将计算字符串中从l
到r
的哈希值,通过前缀哈希表以及下公式计算,注意左侧为低位,右侧为高位。
f(r) - f(l - 1) * p[r - l + 1]
,其中 p
数组存放了从 P^0 \sim P^N
的所有数字,方便查询。