278 lines
6.2 KiB
C#
278 lines
6.2 KiB
C#
// File: LinkedList.cs
|
|
// Created Time: 2022-12-19
|
|
// Author: SayoKun (373484252@qq.com)
|
|
|
|
using System;
|
|
using System.Linq;
|
|
|
|
namespace hello_algo.chapter_computational_complexity
|
|
{
|
|
public class time_complexity
|
|
{
|
|
/// <summary>
|
|
/// 常数阶
|
|
/// </summary>
|
|
/// <param name="n"></param>
|
|
/// <returns></returns>
|
|
int constant(int n)
|
|
{
|
|
int count = 0;
|
|
int size = 100000;
|
|
for (int i = 0; i < size; i++)
|
|
count++;
|
|
return count;
|
|
}
|
|
|
|
/// <summary>
|
|
/// 线性阶
|
|
/// </summary>
|
|
/// <param name="n"></param>
|
|
/// <returns></returns>
|
|
int linear(int n)
|
|
{
|
|
int count = 0;
|
|
for (int i = 0; i < n; i++)
|
|
count++;
|
|
return count;
|
|
}
|
|
|
|
/// <summary>
|
|
/// 线性阶(遍历数组)
|
|
/// </summary>
|
|
/// <param name="nums"></param>
|
|
/// <returns></returns>
|
|
int arrayTraversal(int[] nums)
|
|
{
|
|
int count = 0;
|
|
// 循环次数与数组长度成正比
|
|
foreach (int num in nums)
|
|
{
|
|
count++;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/// <summary>
|
|
/// 平方阶
|
|
/// </summary>
|
|
/// <param name="n"></param>
|
|
/// <returns></returns>
|
|
int quadratic(int n)
|
|
{
|
|
int count = 0;
|
|
// 循环次数与数组长度成平方关系
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
for (int j = 0; j < n; j++)
|
|
{
|
|
count++;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/// <summary>
|
|
/// 平方阶(冒泡排序)
|
|
/// </summary>
|
|
/// <param name="nums"></param>
|
|
/// <returns></returns>
|
|
int bubbleSort(int[] nums)
|
|
{
|
|
int count = 0; // 计数器
|
|
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
|
|
for (int i = nums.Length - 1; i > 0; i--)
|
|
{
|
|
// 内循环:冒泡操作
|
|
for (int j = 0; j < i; j++)
|
|
{
|
|
if (nums[j] > nums[j + 1])
|
|
{
|
|
// 交换 nums[j] 与 nums[j + 1]
|
|
int tmp = nums[j];
|
|
nums[j] = nums[j + 1];
|
|
nums[j + 1] = tmp;
|
|
count += 3; // 元素交换包含 3 个单元操作
|
|
}
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/// <summary>
|
|
/// 指数阶(循环实现)
|
|
/// </summary>
|
|
/// <param name="n"></param>
|
|
/// <returns></returns>
|
|
int exponential(int n)
|
|
{
|
|
int count = 0, baseNum = 1;
|
|
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
for (int j = 0; j < baseNum; j++)
|
|
{
|
|
count++;
|
|
}
|
|
baseNum *= 2;
|
|
}
|
|
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
|
return count;
|
|
}
|
|
|
|
/// <summary>
|
|
/// 指数阶(递归实现)
|
|
/// </summary>
|
|
/// <param name="n"></param>
|
|
/// <returns></returns>
|
|
int expRecur(int n)
|
|
{
|
|
if (n == 1) return 1;
|
|
return expRecur(n - 1) + expRecur(n - 1) + 1;
|
|
}
|
|
|
|
/// <summary>
|
|
/// 对数阶(循环实现)
|
|
/// </summary>
|
|
/// <param name="n"></param>
|
|
/// <returns></returns>
|
|
int logarithmic(float n)
|
|
{
|
|
int count = 0;
|
|
while (n > 1)
|
|
{
|
|
n = n / 2;
|
|
count++;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/// <summary>
|
|
/// 对数阶(递归实现)
|
|
/// </summary>
|
|
/// <param name="n"></param>
|
|
/// <returns></returns>
|
|
int logRecur(float n)
|
|
{
|
|
if (n <= 1) return 0;
|
|
return logRecur(n / 2) + 1;
|
|
}
|
|
|
|
/// <summary>
|
|
/// 线性对数阶
|
|
/// </summary>
|
|
/// <param name="n"></param>
|
|
/// <returns></returns>
|
|
int linearLogRecur(float n)
|
|
{
|
|
if (n <= 1) return 1;
|
|
int count = linearLogRecur(n / 2) +
|
|
linearLogRecur(n / 2);
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
count++;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/// <summary>
|
|
/// 阶乘阶(递归实现)
|
|
/// </summary>
|
|
/// <param name="n">递归数</param>
|
|
/// <returns></returns>
|
|
int factorialRecur(int n)
|
|
{
|
|
if (n == 0) return 1;
|
|
int count = 0;
|
|
// 从 1 个分裂出 n 个
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
count += factorialRecur(n - 1);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/// <summary>
|
|
/// 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱
|
|
/// </summary>
|
|
/// <param name="n">数组大小</param>
|
|
/// <returns></returns>
|
|
int[] randomNumbers(int n)
|
|
{
|
|
int[] nums = new int[n];
|
|
// 生成数组 nums = { 1, 2, 3, ..., n }
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
nums[i] = i + 1;
|
|
}
|
|
// 随机打乱数组元素
|
|
nums = nums.OrderBy(num => System.Random.Shared.Next()).ToArray();
|
|
return nums;
|
|
}
|
|
|
|
/// <summary>
|
|
/// 查找数组 nums 中数字 1 所在索引
|
|
/// </summary>
|
|
/// <param name="nums">索引数组</param>
|
|
/// <returns></returns>
|
|
int findOne(in Span<int> nums) => nums.IndexOf(1);
|
|
|
|
void worstBestTimeComplexity()
|
|
{
|
|
for (int i = 0; i < 10; i++)
|
|
{
|
|
int n = 100;
|
|
int[] nums = randomNumbers(n);
|
|
int index = findOne(nums);
|
|
System.Console.WriteLine($"打乱后的数组为 [{string.Join(",", nums)}]");
|
|
System.Console.WriteLine($"数字 1 的索引为 [{index}]");
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Driver Code
|
|
/// </summary>
|
|
public void main()
|
|
{
|
|
// 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
|
|
int n = 8;
|
|
System.Console.WriteLine("输入数据大小 n = " + n);
|
|
|
|
int count = constant(n);
|
|
System.Console.WriteLine("常数阶的计算操作数量 = " + count);
|
|
|
|
count = linear(n);
|
|
System.Console.WriteLine("线性阶的计算操作数量 = " + count);
|
|
|
|
count = arrayTraversal(new int[n]);
|
|
System.Console.WriteLine("线性阶(遍历数组)的计算操作数量 = " + count);
|
|
|
|
count = quadratic(n);
|
|
System.Console.WriteLine("平方阶的计算操作数量 = " + count);
|
|
|
|
int[] nums = new int[n];
|
|
for (int i = 0; i < n; i++)
|
|
nums[i] = n - i; // [n,n-1,...,2,1]
|
|
count = bubbleSort(nums);
|
|
System.Console.WriteLine("平方阶(冒泡排序)的计算操作数量 = " + count);
|
|
|
|
count = exponential(n);
|
|
System.Console.WriteLine("指数阶(循环实现)的计算操作数量 = " + count);
|
|
|
|
count = expRecur(n);
|
|
System.Console.WriteLine("指数阶(递归实现)的计算操作数量 = " + count);
|
|
|
|
count = logarithmic((float)n);
|
|
System.Console.WriteLine("对数阶(循环实现)的计算操作数量 = " + count);
|
|
|
|
count = logRecur((float)n);
|
|
System.Console.WriteLine("对数阶(递归实现)的计算操作数量 = " + count);
|
|
|
|
count = linearLogRecur((float)n);
|
|
System.Console.WriteLine("线性对数阶(递归实现)的计算操作数量 = " + count);
|
|
|
|
count = factorialRecur(n);
|
|
System.Console.WriteLine("阶乘阶(递归实现)的计算操作数量 = " + count);
|
|
}
|
|
}
|
|
}
|