762 lines
40 KiB
Markdown
762 lines
40 KiB
Markdown
---
|
||
comments: true
|
||
---
|
||
|
||
# 10.1 Binary search
|
||
|
||
<u>Binary search</u> is an efficient search algorithm based on the divide-and-conquer strategy. It utilizes the orderliness of data, reducing the search range by half each round until the target element is found or the search interval is empty.
|
||
|
||
!!! question
|
||
|
||
Given an array `nums` of length $n$, with elements arranged in ascending order and non-repeating. Please find and return the index of element `target` in this array. If the array does not contain the element, return $-1$. An example is shown in Figure 10-1.
|
||
|
||
{ class="animation-figure" }
|
||
|
||
<p align="center"> Figure 10-1 Binary search example data </p>
|
||
|
||
As shown in Figure 10-2, we first initialize pointers $i = 0$ and $j = n - 1$, pointing to the first and last elements of the array, representing the search interval $[0, n - 1]$. Please note that square brackets indicate a closed interval, which includes the boundary values themselves.
|
||
|
||
Next, perform the following two steps in a loop.
|
||
|
||
1. Calculate the midpoint index $m = \lfloor {(i + j) / 2} \rfloor$, where $\lfloor \: \rfloor$ denotes the floor operation.
|
||
2. Compare the size of `nums[m]` and `target`, divided into the following three scenarios.
|
||
1. If `nums[m] < target`, it indicates that `target` is in the interval $[m + 1, j]$, thus set $i = m + 1$.
|
||
2. If `nums[m] > target`, it indicates that `target` is in the interval $[i, m - 1]$, thus set $j = m - 1$.
|
||
3. If `nums[m] = target`, it indicates that `target` is found, thus return index $m$.
|
||
|
||
If the array does not contain the target element, the search interval will eventually reduce to empty. In this case, return $-1$.
|
||
|
||
=== "<1>"
|
||
{ class="animation-figure" }
|
||
|
||
=== "<2>"
|
||
{ class="animation-figure" }
|
||
|
||
=== "<3>"
|
||
{ class="animation-figure" }
|
||
|
||
=== "<4>"
|
||
{ class="animation-figure" }
|
||
|
||
=== "<5>"
|
||
{ class="animation-figure" }
|
||
|
||
=== "<6>"
|
||
{ class="animation-figure" }
|
||
|
||
=== "<7>"
|
||
{ class="animation-figure" }
|
||
|
||
<p align="center"> Figure 10-2 Binary search process </p>
|
||
|
||
It's worth noting that since $i$ and $j$ are both of type `int`, **$i + j$ might exceed the range of `int` type**. To avoid large number overflow, we usually use the formula $m = \lfloor {i + (j - i) / 2} \rfloor$ to calculate the midpoint.
|
||
|
||
The code is as follows:
|
||
|
||
=== "Python"
|
||
|
||
```python title="binary_search.py"
|
||
def binary_search(nums: list[int], target: int) -> int:
|
||
"""二分查找(双闭区间)"""
|
||
# 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
|
||
i, j = 0, len(nums) - 1
|
||
# 循环,当搜索区间为空时跳出(当 i > j 时为空)
|
||
while i <= j:
|
||
# 理论上 Python 的数字可以无限大(取决于内存大小),无须考虑大数越界问题
|
||
m = (i + j) // 2 # 计算中点索引 m
|
||
if nums[m] < target:
|
||
i = m + 1 # 此情况说明 target 在区间 [m+1, j] 中
|
||
elif nums[m] > target:
|
||
j = m - 1 # 此情况说明 target 在区间 [i, m-1] 中
|
||
else:
|
||
return m # 找到目标元素,返回其索引
|
||
return -1 # 未找到目标元素,返回 -1
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="binary_search.cpp"
|
||
/* 二分查找(双闭区间) */
|
||
int binarySearch(vector<int> &nums, int target) {
|
||
// 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
|
||
int i = 0, j = nums.size() - 1;
|
||
// 循环,当搜索区间为空时跳出(当 i > j 时为空)
|
||
while (i <= j) {
|
||
int m = i + (j - i) / 2; // 计算中点索引 m
|
||
if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j] 中
|
||
i = m + 1;
|
||
else if (nums[m] > target) // 此情况说明 target 在区间 [i, m-1] 中
|
||
j = m - 1;
|
||
else // 找到目标元素,返回其索引
|
||
return m;
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "Java"
|
||
|
||
```java title="binary_search.java"
|
||
/* 二分查找(双闭区间) */
|
||
int binarySearch(int[] nums, int target) {
|
||
// 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
|
||
int i = 0, j = nums.length - 1;
|
||
// 循环,当搜索区间为空时跳出(当 i > j 时为空)
|
||
while (i <= j) {
|
||
int m = i + (j - i) / 2; // 计算中点索引 m
|
||
if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j] 中
|
||
i = m + 1;
|
||
else if (nums[m] > target) // 此情况说明 target 在区间 [i, m-1] 中
|
||
j = m - 1;
|
||
else // 找到目标元素,返回其索引
|
||
return m;
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="binary_search.cs"
|
||
/* 二分查找(双闭区间) */
|
||
int BinarySearch(int[] nums, int target) {
|
||
// 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
|
||
int i = 0, j = nums.Length - 1;
|
||
// 循环,当搜索区间为空时跳出(当 i > j 时为空)
|
||
while (i <= j) {
|
||
int m = i + (j - i) / 2; // 计算中点索引 m
|
||
if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j] 中
|
||
i = m + 1;
|
||
else if (nums[m] > target) // 此情况说明 target 在区间 [i, m-1] 中
|
||
j = m - 1;
|
||
else // 找到目标元素,返回其索引
|
||
return m;
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="binary_search.go"
|
||
/* 二分查找(双闭区间) */
|
||
func binarySearch(nums []int, target int) int {
|
||
// 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
|
||
i, j := 0, len(nums)-1
|
||
// 循环,当搜索区间为空时跳出(当 i > j 时为空)
|
||
for i <= j {
|
||
m := i + (j-i)/2 // 计算中点索引 m
|
||
if nums[m] < target { // 此情况说明 target 在区间 [m+1, j] 中
|
||
i = m + 1
|
||
} else if nums[m] > target { // 此情况说明 target 在区间 [i, m-1] 中
|
||
j = m - 1
|
||
} else { // 找到目标元素,返回其索引
|
||
return m
|
||
}
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="binary_search.swift"
|
||
/* 二分查找(双闭区间) */
|
||
func binarySearch(nums: [Int], target: Int) -> Int {
|
||
// 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
|
||
var i = nums.startIndex
|
||
var j = nums.endIndex - 1
|
||
// 循环,当搜索区间为空时跳出(当 i > j 时为空)
|
||
while i <= j {
|
||
let m = i + (j - i) / 2 // 计算中点索引 m
|
||
if nums[m] < target { // 此情况说明 target 在区间 [m+1, j] 中
|
||
i = m + 1
|
||
} else if nums[m] > target { // 此情况说明 target 在区间 [i, m-1] 中
|
||
j = m - 1
|
||
} else { // 找到目标元素,返回其索引
|
||
return m
|
||
}
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1
|
||
}
|
||
```
|
||
|
||
=== "JS"
|
||
|
||
```javascript title="binary_search.js"
|
||
/* 二分查找(双闭区间) */
|
||
function binarySearch(nums, target) {
|
||
// 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
|
||
let i = 0,
|
||
j = nums.length - 1;
|
||
// 循环,当搜索区间为空时跳出(当 i > j 时为空)
|
||
while (i <= j) {
|
||
// 计算中点索引 m ,使用 parseInt() 向下取整
|
||
const m = parseInt(i + (j - i) / 2);
|
||
if (nums[m] < target)
|
||
// 此情况说明 target 在区间 [m+1, j] 中
|
||
i = m + 1;
|
||
else if (nums[m] > target)
|
||
// 此情况说明 target 在区间 [i, m-1] 中
|
||
j = m - 1;
|
||
else return m; // 找到目标元素,返回其索引
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "TS"
|
||
|
||
```typescript title="binary_search.ts"
|
||
/* 二分查找(双闭区间) */
|
||
function binarySearch(nums: number[], target: number): number {
|
||
// 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
|
||
let i = 0,
|
||
j = nums.length - 1;
|
||
// 循环,当搜索区间为空时跳出(当 i > j 时为空)
|
||
while (i <= j) {
|
||
// 计算中点索引 m
|
||
const m = Math.floor(i + (j - i) / 2);
|
||
if (nums[m] < target) {
|
||
// 此情况说明 target 在区间 [m+1, j] 中
|
||
i = m + 1;
|
||
} else if (nums[m] > target) {
|
||
// 此情况说明 target 在区间 [i, m-1] 中
|
||
j = m - 1;
|
||
} else {
|
||
// 找到目标元素,返回其索引
|
||
return m;
|
||
}
|
||
}
|
||
return -1; // 未找到目标元素,返回 -1
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="binary_search.dart"
|
||
/* 二分查找(双闭区间) */
|
||
int binarySearch(List<int> nums, int target) {
|
||
// 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
|
||
int i = 0, j = nums.length - 1;
|
||
// 循环,当搜索区间为空时跳出(当 i > j 时为空)
|
||
while (i <= j) {
|
||
int m = i + (j - i) ~/ 2; // 计算中点索引 m
|
||
if (nums[m] < target) {
|
||
// 此情况说明 target 在区间 [m+1, j] 中
|
||
i = m + 1;
|
||
} else if (nums[m] > target) {
|
||
// 此情况说明 target 在区间 [i, m-1] 中
|
||
j = m - 1;
|
||
} else {
|
||
// 找到目标元素,返回其索引
|
||
return m;
|
||
}
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "Rust"
|
||
|
||
```rust title="binary_search.rs"
|
||
/* 二分查找(双闭区间) */
|
||
fn binary_search(nums: &[i32], target: i32) -> i32 {
|
||
// 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
|
||
let mut i = 0;
|
||
let mut j = nums.len() as i32 - 1;
|
||
// 循环,当搜索区间为空时跳出(当 i > j 时为空)
|
||
while i <= j {
|
||
let m = i + (j - i) / 2; // 计算中点索引 m
|
||
if nums[m as usize] < target {
|
||
// 此情况说明 target 在区间 [m+1, j] 中
|
||
i = m + 1;
|
||
} else if nums[m as usize] > target {
|
||
// 此情况说明 target 在区间 [i, m-1] 中
|
||
j = m - 1;
|
||
} else {
|
||
// 找到目标元素,返回其索引
|
||
return m;
|
||
}
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="binary_search.c"
|
||
/* 二分查找(双闭区间) */
|
||
int binarySearch(int *nums, int len, int target) {
|
||
// 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
|
||
int i = 0, j = len - 1;
|
||
// 循环,当搜索区间为空时跳出(当 i > j 时为空)
|
||
while (i <= j) {
|
||
int m = i + (j - i) / 2; // 计算中点索引 m
|
||
if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j] 中
|
||
i = m + 1;
|
||
else if (nums[m] > target) // 此情况说明 target 在区间 [i, m-1] 中
|
||
j = m - 1;
|
||
else // 找到目标元素,返回其索引
|
||
return m;
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "Kotlin"
|
||
|
||
```kotlin title="binary_search.kt"
|
||
/* 二分查找(双闭区间) */
|
||
fun binarySearch(nums: IntArray, target: Int): Int {
|
||
// 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
|
||
var i = 0
|
||
var j = nums.size - 1
|
||
// 循环,当搜索区间为空时跳出(当 i > j 时为空)
|
||
while (i <= j) {
|
||
val m = i + (j - i) / 2 // 计算中点索引 m
|
||
if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j] 中
|
||
i = m + 1
|
||
else if (nums[m] > target) // 此情况说明 target 在区间 [i, m-1] 中
|
||
j = m - 1
|
||
else // 找到目标元素,返回其索引
|
||
return m
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1
|
||
}
|
||
```
|
||
|
||
=== "Ruby"
|
||
|
||
```ruby title="binary_search.rb"
|
||
### 二分查找(双闭区间) ###
|
||
def binary_search(nums, target)
|
||
# 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
|
||
i, j = 0, nums.length - 1
|
||
|
||
# 循环,当搜索区间为空时跳出(当 i > j 时为空)
|
||
while i <= j
|
||
# 理论上 Ruby 的数字可以无限大(取决于内存大小),无须考虑大数越界问题
|
||
m = (i + j) / 2 # 计算中点索引 m
|
||
|
||
if nums[m] < target
|
||
i = m + 1 # 此情况说明 target 在区间 [m+1, j] 中
|
||
elsif nums[m] > target
|
||
j = m - 1 # 此情况说明 target 在区间 [i, m-1] 中
|
||
else
|
||
return m # 找到目标元素,返回其索引
|
||
end
|
||
end
|
||
|
||
-1 # 未找到目标元素,返回 -1
|
||
end
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="binary_search.zig"
|
||
// 二分查找(双闭区间)
|
||
fn binarySearch(comptime T: type, nums: std.ArrayList(T), target: T) T {
|
||
// 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
|
||
var i: usize = 0;
|
||
var j: usize = nums.items.len - 1;
|
||
// 循环,当搜索区间为空时跳出(当 i > j 时为空)
|
||
while (i <= j) {
|
||
var m = i + (j - i) / 2; // 计算中点索引 m
|
||
if (nums.items[m] < target) { // 此情况说明 target 在区间 [m+1, j] 中
|
||
i = m + 1;
|
||
} else if (nums.items[m] > target) { // 此情况说明 target 在区间 [i, m-1] 中
|
||
j = m - 1;
|
||
} else { // 找到目标元素,返回其索引
|
||
return @intCast(m);
|
||
}
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
??? pythontutor "Code Visualization"
|
||
|
||
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20binary_search%28nums%3A%20list%5Bint%5D,%20target%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%88%E5%8F%8C%E9%97%AD%E5%8C%BA%E9%97%B4%EF%BC%89%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%8F%8C%E9%97%AD%E5%8C%BA%E9%97%B4%20%5B0,%20n-1%5D%20%EF%BC%8C%E5%8D%B3%20i,%20j%20%E5%88%86%E5%88%AB%E6%8C%87%E5%90%91%E6%95%B0%E7%BB%84%E9%A6%96%E5%85%83%E7%B4%A0%E3%80%81%E5%B0%BE%E5%85%83%E7%B4%A0%0A%20%20%20%20i,%20j%20%3D%200,%20len%28nums%29%20-%201%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%EF%BC%8C%E5%BD%93%E6%90%9C%E7%B4%A2%E5%8C%BA%E9%97%B4%E4%B8%BA%E7%A9%BA%E6%97%B6%E8%B7%B3%E5%87%BA%EF%BC%88%E5%BD%93%20i%20%3E%20j%20%E6%97%B6%E4%B8%BA%E7%A9%BA%EF%BC%89%0A%20%20%20%20while%20i%20%3C%3D%20j%3A%0A%20%20%20%20%20%20%20%20%23%20%E7%90%86%E8%AE%BA%E4%B8%8A%20Python%20%E7%9A%84%E6%95%B0%E5%AD%97%E5%8F%AF%E4%BB%A5%E6%97%A0%E9%99%90%E5%A4%A7%EF%BC%88%E5%8F%96%E5%86%B3%E4%BA%8E%E5%86%85%E5%AD%98%E5%A4%A7%E5%B0%8F%EF%BC%89%EF%BC%8C%E6%97%A0%E9%A1%BB%E8%80%83%E8%99%91%E5%A4%A7%E6%95%B0%E8%B6%8A%E7%95%8C%E9%97%AE%E9%A2%98%0A%20%20%20%20%20%20%20%20m%20%3D%20%28i%20%2B%20j%29%20//%202%20%20%23%20%E8%AE%A1%E7%AE%97%E4%B8%AD%E7%82%B9%E7%B4%A2%E5%BC%95%20m%0A%20%20%20%20%20%20%20%20if%20nums%5Bm%5D%20%3C%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%3D%20m%20%2B%201%20%20%23%20%E6%AD%A4%E6%83%85%E5%86%B5%E8%AF%B4%E6%98%8E%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bm%2B1,%20j%5D%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20elif%20nums%5Bm%5D%20%3E%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20%3D%20m%20-%201%20%20%23%20%E6%AD%A4%E6%83%85%E5%86%B5%E8%AF%B4%E6%98%8E%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bi,%20m-1%5D%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20m%20%20%23%20%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E8%BF%94%E5%9B%9E%E5%85%B6%E7%B4%A2%E5%BC%95%0A%20%20%20%20return%20-1%20%20%23%20%E6%9C%AA%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E8%BF%94%E5%9B%9E%20-1%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20target%20%3D%206%0A%20%20%20%20nums%20%3D%20%5B1,%203,%206,%208,%2012,%2015,%2023,%2026,%2031,%2035%5D%0A%0A%20%20%20%20%23%20%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%88%E5%8F%8C%E9%97%AD%E5%8C%BA%E9%97%B4%EF%BC%89%0A%20%20%20%20index%20%3D%20binary_search%28nums,%20target%29%0A%20%20%20%20print%28%22%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%206%20%E7%9A%84%E7%B4%A2%E5%BC%95%20%3D%20%22,%20index%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20binary_search%28nums%3A%20list%5Bint%5D,%20target%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%88%E5%8F%8C%E9%97%AD%E5%8C%BA%E9%97%B4%EF%BC%89%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%8F%8C%E9%97%AD%E5%8C%BA%E9%97%B4%20%5B0,%20n-1%5D%20%EF%BC%8C%E5%8D%B3%20i,%20j%20%E5%88%86%E5%88%AB%E6%8C%87%E5%90%91%E6%95%B0%E7%BB%84%E9%A6%96%E5%85%83%E7%B4%A0%E3%80%81%E5%B0%BE%E5%85%83%E7%B4%A0%0A%20%20%20%20i,%20j%20%3D%200,%20len%28nums%29%20-%201%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%EF%BC%8C%E5%BD%93%E6%90%9C%E7%B4%A2%E5%8C%BA%E9%97%B4%E4%B8%BA%E7%A9%BA%E6%97%B6%E8%B7%B3%E5%87%BA%EF%BC%88%E5%BD%93%20i%20%3E%20j%20%E6%97%B6%E4%B8%BA%E7%A9%BA%EF%BC%89%0A%20%20%20%20while%20i%20%3C%3D%20j%3A%0A%20%20%20%20%20%20%20%20%23%20%E7%90%86%E8%AE%BA%E4%B8%8A%20Python%20%E7%9A%84%E6%95%B0%E5%AD%97%E5%8F%AF%E4%BB%A5%E6%97%A0%E9%99%90%E5%A4%A7%EF%BC%88%E5%8F%96%E5%86%B3%E4%BA%8E%E5%86%85%E5%AD%98%E5%A4%A7%E5%B0%8F%EF%BC%89%EF%BC%8C%E6%97%A0%E9%A1%BB%E8%80%83%E8%99%91%E5%A4%A7%E6%95%B0%E8%B6%8A%E7%95%8C%E9%97%AE%E9%A2%98%0A%20%20%20%20%20%20%20%20m%20%3D%20%28i%20%2B%20j%29%20//%202%20%20%23%20%E8%AE%A1%E7%AE%97%E4%B8%AD%E7%82%B9%E7%B4%A2%E5%BC%95%20m%0A%20%20%20%20%20%20%20%20if%20nums%5Bm%5D%20%3C%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%3D%20m%20%2B%201%20%20%23%20%E6%AD%A4%E6%83%85%E5%86%B5%E8%AF%B4%E6%98%8E%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bm%2B1,%20j%5D%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20elif%20nums%5Bm%5D%20%3E%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20%3D%20m%20-%201%20%20%23%20%E6%AD%A4%E6%83%85%E5%86%B5%E8%AF%B4%E6%98%8E%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bi,%20m-1%5D%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20m%20%20%23%20%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E8%BF%94%E5%9B%9E%E5%85%B6%E7%B4%A2%E5%BC%95%0A%20%20%20%20return%20-1%20%20%23%20%E6%9C%AA%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E8%BF%94%E5%9B%9E%20-1%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20target%20%3D%206%0A%20%20%20%20nums%20%3D%20%5B1,%203,%206,%208,%2012,%2015,%2023,%2026,%2031,%2035%5D%0A%0A%20%20%20%20%23%20%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%88%E5%8F%8C%E9%97%AD%E5%8C%BA%E9%97%B4%EF%BC%89%0A%20%20%20%20index%20%3D%20binary_search%28nums,%20target%29%0A%20%20%20%20print%28%22%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%206%20%E7%9A%84%E7%B4%A2%E5%BC%95%20%3D%20%22,%20index%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div>
|
||
|
||
**Time complexity is $O(\log n)$** : In the binary loop, the interval reduces by half each round, hence the number of iterations is $\log_2 n$.
|
||
|
||
**Space complexity is $O(1)$** : Pointers $i$ and $j$ use constant size space.
|
||
|
||
## 10.1.1 Interval representation methods
|
||
|
||
Besides the aforementioned closed interval, a common interval representation is the "left-closed right-open" interval, defined as $[0, n)$, where the left boundary includes itself, and the right boundary does not include itself. In this representation, the interval $[i, j)$ is empty when $i = j$.
|
||
|
||
We can implement a binary search algorithm with the same functionality based on this representation:
|
||
|
||
=== "Python"
|
||
|
||
```python title="binary_search.py"
|
||
def binary_search_lcro(nums: list[int], target: int) -> int:
|
||
"""二分查找(左闭右开区间)"""
|
||
# 初始化左闭右开区间 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
|
||
i, j = 0, len(nums)
|
||
# 循环,当搜索区间为空时跳出(当 i = j 时为空)
|
||
while i < j:
|
||
m = (i + j) // 2 # 计算中点索引 m
|
||
if nums[m] < target:
|
||
i = m + 1 # 此情况说明 target 在区间 [m+1, j) 中
|
||
elif nums[m] > target:
|
||
j = m # 此情况说明 target 在区间 [i, m) 中
|
||
else:
|
||
return m # 找到目标元素,返回其索引
|
||
return -1 # 未找到目标元素,返回 -1
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="binary_search.cpp"
|
||
/* 二分查找(左闭右开区间) */
|
||
int binarySearchLCRO(vector<int> &nums, int target) {
|
||
// 初始化左闭右开区间 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
|
||
int i = 0, j = nums.size();
|
||
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
|
||
while (i < j) {
|
||
int m = i + (j - i) / 2; // 计算中点索引 m
|
||
if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j) 中
|
||
i = m + 1;
|
||
else if (nums[m] > target) // 此情况说明 target 在区间 [i, m) 中
|
||
j = m;
|
||
else // 找到目标元素,返回其索引
|
||
return m;
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "Java"
|
||
|
||
```java title="binary_search.java"
|
||
/* 二分查找(左闭右开区间) */
|
||
int binarySearchLCRO(int[] nums, int target) {
|
||
// 初始化左闭右开区间 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
|
||
int i = 0, j = nums.length;
|
||
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
|
||
while (i < j) {
|
||
int m = i + (j - i) / 2; // 计算中点索引 m
|
||
if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j) 中
|
||
i = m + 1;
|
||
else if (nums[m] > target) // 此情况说明 target 在区间 [i, m) 中
|
||
j = m;
|
||
else // 找到目标元素,返回其索引
|
||
return m;
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="binary_search.cs"
|
||
/* 二分查找(左闭右开区间) */
|
||
int BinarySearchLCRO(int[] nums, int target) {
|
||
// 初始化左闭右开区间 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
|
||
int i = 0, j = nums.Length;
|
||
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
|
||
while (i < j) {
|
||
int m = i + (j - i) / 2; // 计算中点索引 m
|
||
if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j) 中
|
||
i = m + 1;
|
||
else if (nums[m] > target) // 此情况说明 target 在区间 [i, m) 中
|
||
j = m;
|
||
else // 找到目标元素,返回其索引
|
||
return m;
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="binary_search.go"
|
||
/* 二分查找(左闭右开区间) */
|
||
func binarySearchLCRO(nums []int, target int) int {
|
||
// 初始化左闭右开区间 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
|
||
i, j := 0, len(nums)
|
||
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
|
||
for i < j {
|
||
m := i + (j-i)/2 // 计算中点索引 m
|
||
if nums[m] < target { // 此情况说明 target 在区间 [m+1, j) 中
|
||
i = m + 1
|
||
} else if nums[m] > target { // 此情况说明 target 在区间 [i, m) 中
|
||
j = m
|
||
} else { // 找到目标元素,返回其索引
|
||
return m
|
||
}
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="binary_search.swift"
|
||
/* 二分查找(左闭右开区间) */
|
||
func binarySearchLCRO(nums: [Int], target: Int) -> Int {
|
||
// 初始化左闭右开区间 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
|
||
var i = nums.startIndex
|
||
var j = nums.endIndex
|
||
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
|
||
while i < j {
|
||
let m = i + (j - i) / 2 // 计算中点索引 m
|
||
if nums[m] < target { // 此情况说明 target 在区间 [m+1, j) 中
|
||
i = m + 1
|
||
} else if nums[m] > target { // 此情况说明 target 在区间 [i, m) 中
|
||
j = m
|
||
} else { // 找到目标元素,返回其索引
|
||
return m
|
||
}
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1
|
||
}
|
||
```
|
||
|
||
=== "JS"
|
||
|
||
```javascript title="binary_search.js"
|
||
/* 二分查找(左闭右开区间) */
|
||
function binarySearchLCRO(nums, target) {
|
||
// 初始化左闭右开区间 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
|
||
let i = 0,
|
||
j = nums.length;
|
||
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
|
||
while (i < j) {
|
||
// 计算中点索引 m ,使用 parseInt() 向下取整
|
||
const m = parseInt(i + (j - i) / 2);
|
||
if (nums[m] < target)
|
||
// 此情况说明 target 在区间 [m+1, j) 中
|
||
i = m + 1;
|
||
else if (nums[m] > target)
|
||
// 此情况说明 target 在区间 [i, m) 中
|
||
j = m;
|
||
// 找到目标元素,返回其索引
|
||
else return m;
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "TS"
|
||
|
||
```typescript title="binary_search.ts"
|
||
/* 二分查找(左闭右开区间) */
|
||
function binarySearchLCRO(nums: number[], target: number): number {
|
||
// 初始化左闭右开区间 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
|
||
let i = 0,
|
||
j = nums.length;
|
||
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
|
||
while (i < j) {
|
||
// 计算中点索引 m
|
||
const m = Math.floor(i + (j - i) / 2);
|
||
if (nums[m] < target) {
|
||
// 此情况说明 target 在区间 [m+1, j) 中
|
||
i = m + 1;
|
||
} else if (nums[m] > target) {
|
||
// 此情况说明 target 在区间 [i, m) 中
|
||
j = m;
|
||
} else {
|
||
// 找到目标元素,返回其索引
|
||
return m;
|
||
}
|
||
}
|
||
return -1; // 未找到目标元素,返回 -1
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="binary_search.dart"
|
||
/* 二分查找(左闭右开区间) */
|
||
int binarySearchLCRO(List<int> nums, int target) {
|
||
// 初始化左闭右开区间 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
|
||
int i = 0, j = nums.length;
|
||
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
|
||
while (i < j) {
|
||
int m = i + (j - i) ~/ 2; // 计算中点索引 m
|
||
if (nums[m] < target) {
|
||
// 此情况说明 target 在区间 [m+1, j) 中
|
||
i = m + 1;
|
||
} else if (nums[m] > target) {
|
||
// 此情况说明 target 在区间 [i, m) 中
|
||
j = m;
|
||
} else {
|
||
// 找到目标元素,返回其索引
|
||
return m;
|
||
}
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "Rust"
|
||
|
||
```rust title="binary_search.rs"
|
||
/* 二分查找(左闭右开区间) */
|
||
fn binary_search_lcro(nums: &[i32], target: i32) -> i32 {
|
||
// 初始化左闭右开区间 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
|
||
let mut i = 0;
|
||
let mut j = nums.len() as i32;
|
||
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
|
||
while i < j {
|
||
let m = i + (j - i) / 2; // 计算中点索引 m
|
||
if nums[m as usize] < target {
|
||
// 此情况说明 target 在区间 [m+1, j) 中
|
||
i = m + 1;
|
||
} else if nums[m as usize] > target {
|
||
// 此情况说明 target 在区间 [i, m) 中
|
||
j = m;
|
||
} else {
|
||
// 找到目标元素,返回其索引
|
||
return m;
|
||
}
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="binary_search.c"
|
||
/* 二分查找(左闭右开区间) */
|
||
int binarySearchLCRO(int *nums, int len, int target) {
|
||
// 初始化左闭右开区间 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
|
||
int i = 0, j = len;
|
||
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
|
||
while (i < j) {
|
||
int m = i + (j - i) / 2; // 计算中点索引 m
|
||
if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j) 中
|
||
i = m + 1;
|
||
else if (nums[m] > target) // 此情况说明 target 在区间 [i, m) 中
|
||
j = m;
|
||
else // 找到目标元素,返回其索引
|
||
return m;
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "Kotlin"
|
||
|
||
```kotlin title="binary_search.kt"
|
||
/* 二分查找(左闭右开区间) */
|
||
fun binarySearchLCRO(nums: IntArray, target: Int): Int {
|
||
// 初始化左闭右开区间 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
|
||
var i = 0
|
||
var j = nums.size
|
||
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
|
||
while (i < j) {
|
||
val m = i + (j - i) / 2 // 计算中点索引 m
|
||
if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j) 中
|
||
i = m + 1
|
||
else if (nums[m] > target) // 此情况说明 target 在区间 [i, m) 中
|
||
j = m
|
||
else // 找到目标元素,返回其索引
|
||
return m
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1
|
||
}
|
||
```
|
||
|
||
=== "Ruby"
|
||
|
||
```ruby title="binary_search.rb"
|
||
### 二分查找(左闭右开区间) ###
|
||
def binary_search_lcro(nums, target)
|
||
# 初始化左闭右开区间 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
|
||
i, j = 0, nums.length
|
||
|
||
# 循环,当搜索区间为空时跳出(当 i = j 时为空)
|
||
while i < j
|
||
# 计算中点索引 m
|
||
m = (i + j) / 2
|
||
|
||
if nums[m] < target
|
||
i = m + 1 # 此情况说明 target 在区间 [m+1, j) 中
|
||
elsif nums[m] > target
|
||
j = m - 1 # 此情况说明 target 在区间 [i, m) 中
|
||
else
|
||
return m # 找到目标元素,返回其索引
|
||
end
|
||
end
|
||
|
||
-1 # 未找到目标元素,返回 -1
|
||
end
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="binary_search.zig"
|
||
// 二分查找(左闭右开区间)
|
||
fn binarySearchLCRO(comptime T: type, nums: std.ArrayList(T), target: T) T {
|
||
// 初始化左闭右开区间 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
|
||
var i: usize = 0;
|
||
var j: usize = nums.items.len;
|
||
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
|
||
while (i <= j) {
|
||
var m = i + (j - i) / 2; // 计算中点索引 m
|
||
if (nums.items[m] < target) { // 此情况说明 target 在区间 [m+1, j) 中
|
||
i = m + 1;
|
||
} else if (nums.items[m] > target) { // 此情况说明 target 在区间 [i, m) 中
|
||
j = m;
|
||
} else { // 找到目标元素,返回其索引
|
||
return @intCast(m);
|
||
}
|
||
}
|
||
// 未找到目标元素,返回 -1
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
??? pythontutor "Code Visualization"
|
||
|
||
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20binary_search_lcro%28nums%3A%20list%5Bint%5D,%20target%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%88%E5%B7%A6%E9%97%AD%E5%8F%B3%E5%BC%80%E5%8C%BA%E9%97%B4%EF%BC%89%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%B7%A6%E9%97%AD%E5%8F%B3%E5%BC%80%E5%8C%BA%E9%97%B4%20%5B0,%20n%29%20%EF%BC%8C%E5%8D%B3%20i,%20j%20%E5%88%86%E5%88%AB%E6%8C%87%E5%90%91%E6%95%B0%E7%BB%84%E9%A6%96%E5%85%83%E7%B4%A0%E3%80%81%E5%B0%BE%E5%85%83%E7%B4%A0%2B1%0A%20%20%20%20i,%20j%20%3D%200,%20len%28nums%29%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%EF%BC%8C%E5%BD%93%E6%90%9C%E7%B4%A2%E5%8C%BA%E9%97%B4%E4%B8%BA%E7%A9%BA%E6%97%B6%E8%B7%B3%E5%87%BA%EF%BC%88%E5%BD%93%20i%20%3D%20j%20%E6%97%B6%E4%B8%BA%E7%A9%BA%EF%BC%89%0A%20%20%20%20while%20i%20%3C%20j%3A%0A%20%20%20%20%20%20%20%20m%20%3D%20%28i%20%2B%20j%29%20//%202%20%20%23%20%E8%AE%A1%E7%AE%97%E4%B8%AD%E7%82%B9%E7%B4%A2%E5%BC%95%20m%0A%20%20%20%20%20%20%20%20if%20nums%5Bm%5D%20%3C%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%3D%20m%20%2B%201%20%20%23%20%E6%AD%A4%E6%83%85%E5%86%B5%E8%AF%B4%E6%98%8E%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bm%2B1,%20j%29%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20elif%20nums%5Bm%5D%20%3E%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20%3D%20m%20%20%23%20%E6%AD%A4%E6%83%85%E5%86%B5%E8%AF%B4%E6%98%8E%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bi,%20m%29%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20m%20%20%23%20%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E8%BF%94%E5%9B%9E%E5%85%B6%E7%B4%A2%E5%BC%95%0A%20%20%20%20return%20-1%20%20%23%20%E6%9C%AA%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E8%BF%94%E5%9B%9E%20-1%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20target%20%3D%206%0A%20%20%20%20nums%20%3D%20%5B1,%203,%206,%208,%2012,%2015,%2023,%2026,%2031,%2035%5D%0A%0A%20%20%20%20%23%20%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%88%E5%B7%A6%E9%97%AD%E5%8F%B3%E5%BC%80%E5%8C%BA%E9%97%B4%EF%BC%89%0A%20%20%20%20index%20%3D%20binary_search_lcro%28nums,%20target%29%0A%20%20%20%20print%28%22%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%206%20%E7%9A%84%E7%B4%A2%E5%BC%95%20%3D%20%22,%20index%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20binary_search_lcro%28nums%3A%20list%5Bint%5D,%20target%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%88%E5%B7%A6%E9%97%AD%E5%8F%B3%E5%BC%80%E5%8C%BA%E9%97%B4%EF%BC%89%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%B7%A6%E9%97%AD%E5%8F%B3%E5%BC%80%E5%8C%BA%E9%97%B4%20%5B0,%20n%29%20%EF%BC%8C%E5%8D%B3%20i,%20j%20%E5%88%86%E5%88%AB%E6%8C%87%E5%90%91%E6%95%B0%E7%BB%84%E9%A6%96%E5%85%83%E7%B4%A0%E3%80%81%E5%B0%BE%E5%85%83%E7%B4%A0%2B1%0A%20%20%20%20i,%20j%20%3D%200,%20len%28nums%29%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%EF%BC%8C%E5%BD%93%E6%90%9C%E7%B4%A2%E5%8C%BA%E9%97%B4%E4%B8%BA%E7%A9%BA%E6%97%B6%E8%B7%B3%E5%87%BA%EF%BC%88%E5%BD%93%20i%20%3D%20j%20%E6%97%B6%E4%B8%BA%E7%A9%BA%EF%BC%89%0A%20%20%20%20while%20i%20%3C%20j%3A%0A%20%20%20%20%20%20%20%20m%20%3D%20%28i%20%2B%20j%29%20//%202%20%20%23%20%E8%AE%A1%E7%AE%97%E4%B8%AD%E7%82%B9%E7%B4%A2%E5%BC%95%20m%0A%20%20%20%20%20%20%20%20if%20nums%5Bm%5D%20%3C%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%3D%20m%20%2B%201%20%20%23%20%E6%AD%A4%E6%83%85%E5%86%B5%E8%AF%B4%E6%98%8E%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bm%2B1,%20j%29%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20elif%20nums%5Bm%5D%20%3E%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20%3D%20m%20%20%23%20%E6%AD%A4%E6%83%85%E5%86%B5%E8%AF%B4%E6%98%8E%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bi,%20m%29%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20m%20%20%23%20%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E8%BF%94%E5%9B%9E%E5%85%B6%E7%B4%A2%E5%BC%95%0A%20%20%20%20return%20-1%20%20%23%20%E6%9C%AA%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E8%BF%94%E5%9B%9E%20-1%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20target%20%3D%206%0A%20%20%20%20nums%20%3D%20%5B1,%203,%206,%208,%2012,%2015,%2023,%2026,%2031,%2035%5D%0A%0A%20%20%20%20%23%20%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%88%E5%B7%A6%E9%97%AD%E5%8F%B3%E5%BC%80%E5%8C%BA%E9%97%B4%EF%BC%89%0A%20%20%20%20index%20%3D%20binary_search_lcro%28nums,%20target%29%0A%20%20%20%20print%28%22%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%206%20%E7%9A%84%E7%B4%A2%E5%BC%95%20%3D%20%22,%20index%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div>
|
||
|
||
As shown in Figure 10-3, in the two types of interval representations, the initialization of the binary search algorithm, the loop condition, and the narrowing interval operation are different.
|
||
|
||
Since both boundaries in the "closed interval" representation are defined as closed, the operations to narrow the interval through pointers $i$ and $j$ are also symmetrical. This makes it less prone to errors, **therefore, it is generally recommended to use the "closed interval" approach**.
|
||
|
||
{ class="animation-figure" }
|
||
|
||
<p align="center"> Figure 10-3 Two types of interval definitions </p>
|
||
|
||
## 10.1.2 Advantages and limitations
|
||
|
||
Binary search performs well in both time and space aspects.
|
||
|
||
- Binary search is time-efficient. With large data volumes, the logarithmic time complexity has a significant advantage. For instance, when the data size $n = 2^{20}$, linear search requires $2^{20} = 1048576$ iterations, while binary search only requires $\log_2 2^{20} = 20$ iterations.
|
||
- Binary search does not require extra space. Compared to search algorithms that rely on additional space (like hash search), binary search is more space-efficient.
|
||
|
||
However, binary search is not suitable for all situations, mainly for the following reasons.
|
||
|
||
- Binary search is only applicable to ordered data. If the input data is unordered, it is not worth sorting it just to use binary search, as sorting algorithms typically have a time complexity of $O(n \log n)$, which is higher than both linear and binary search. For scenarios with frequent element insertion to maintain array order, inserting elements into specific positions has a time complexity of $O(n)$, which is also quite costly.
|
||
- Binary search is only applicable to arrays. Binary search requires non-continuous (jumping) element access, which is inefficient in linked lists, thus not suitable for use in linked lists or data structures based on linked lists.
|
||
- With small data volumes, linear search performs better. In linear search, each round only requires 1 decision operation; whereas in binary search, it involves 1 addition, 1 division, 1 to 3 decision operations, 1 addition (subtraction), totaling 4 to 6 operations; therefore, when data volume $n$ is small, linear search can be faster than binary search.
|