
理解K神这个实现主要是为了演示邻接矩阵的基本原理,但在实际使用中可能会遇到一些限制:在实际应用中,通常使用顶点的值而不是索引来操作图。所以,为了更“公平”地与邻接表方法的对比,进行了改进: 1. 引入 vertex_map:使用字典 vertex_map 来存储顶点值到索引的映射。 2. 基于值的操作:add_vertex, remove_vertex, add_edge, 和 remove_edge 方法现在都使用顶点值而不是索引。这使得图的操作更加直观和用户友好。 3. 动态索引管理:在 remove_vertex 方法中,更新了剩余顶点的索引映射。这确保了在删除顶点后,其他顶点的索引仍然保持正确。
92 lines
2.5 KiB
Python
92 lines
2.5 KiB
Python
"""
|
|
File: graph_adjacency_matrix.py
|
|
Created Time: 2023-02-23
|
|
Author: krahets (krahets@163.com)
|
|
"""
|
|
|
|
class ImprovedGraphAdjMat:
|
|
def __init__(self, vertices: list[int], edges: list[list[int]]):
|
|
self.vertex_map = {} # 用于存储顶点值到索引的映射
|
|
self.vertices = []
|
|
self.adj_mat = []
|
|
|
|
for val in vertices:
|
|
self.add_vertex(val)
|
|
|
|
for e in edges:
|
|
self.add_edge(e[0], e[1])
|
|
|
|
def add_vertex(self, val: int):
|
|
if val in self.vertex_map:
|
|
return # 如果顶点已存在,直接返回
|
|
|
|
index = len(self.vertices)
|
|
self.vertex_map[val] = index
|
|
self.vertices.append(val)
|
|
|
|
# 更新邻接矩阵
|
|
if self.adj_mat:
|
|
for row in self.adj_mat:
|
|
row.append(0)
|
|
self.adj_mat.append([0] * (index + 1))
|
|
|
|
def remove_vertex(self, val: int):
|
|
if val not in self.vertex_map:
|
|
return # 如果顶点不存在,直接返回
|
|
|
|
index = self.vertex_map[val]
|
|
|
|
# 更新顶点列表和映射
|
|
self.vertices.pop(index)
|
|
del self.vertex_map[val]
|
|
for v in self.vertices[index:]:
|
|
self.vertex_map[v] -= 1
|
|
|
|
# 更新邻接矩阵
|
|
self.adj_mat.pop(index)
|
|
for row in self.adj_mat:
|
|
row.pop(index)
|
|
|
|
def add_edge(self, v1: int, v2: int):
|
|
if v1 not in self.vertex_map or v2 not in self.vertex_map:
|
|
raise ValueError("Vertex not found")
|
|
|
|
i, j = self.vertex_map[v1], self.vertex_map[v2]
|
|
self.adj_mat[i][j] = 1
|
|
self.adj_mat[j][i] = 1
|
|
|
|
def remove_edge(self, v1: int, v2: int):
|
|
if v1 not in self.vertex_map or v2 not in self.vertex_map:
|
|
raise ValueError("Vertex not found")
|
|
|
|
i, j = self.vertex_map[v1], self.vertex_map[v2]
|
|
self.adj_mat[i][j] = 0
|
|
self.adj_mat[j][i] = 0
|
|
|
|
def print(self):
|
|
print("顶点列表 =", self.vertices)
|
|
print("邻接矩阵 =")
|
|
for row in self.adj_mat:
|
|
print(row)
|
|
|
|
# 使用示例
|
|
graph = ImprovedGraphAdjMat([1, 3, 2, 5, 4], [[1, 3], [1, 5], [3, 2], [2, 5], [2, 4], [5, 4]])
|
|
print("\n初始化后,图为")
|
|
graph.print()
|
|
|
|
graph.add_edge(1, 2)
|
|
print("\n添加边 1-2 后,图为")
|
|
graph.print()
|
|
|
|
graph.remove_edge(1, 3)
|
|
print("\n删除边 1-3 后,图为")
|
|
graph.print()
|
|
|
|
graph.add_vertex(6)
|
|
print("\n添加顶点 6 后,图为")
|
|
graph.print()
|
|
|
|
graph.remove_vertex(3)
|
|
print("\n删除顶点 3 后,图为")
|
|
graph.print()
|