hello-algo/en/codes/rust/chapter_tree/binary_search_tree.rs

196 lines
6.6 KiB
Rust

/*
* File: binary_search_tree.rs
* Created Time: 2023-04-20
* Author: xBLACKICEx (xBLACKICE@outlook.com)、night-cruise (2586447362@qq.com)
*/
include!("../include/include.rs");
use std::cell::RefCell;
use std::cmp::Ordering;
use std::rc::Rc;
use tree_node::TreeNode;
type OptionTreeNodeRc = Option<Rc<RefCell<TreeNode>>>;
/* Binary search tree */
pub struct BinarySearchTree {
root: OptionTreeNodeRc,
}
impl BinarySearchTree {
/* Constructor */
pub fn new() -> Self {
// Initialize empty tree
Self { root: None }
}
/* Get binary tree root node */
pub fn get_root(&self) -> OptionTreeNodeRc {
self.root.clone()
}
/* Search node */
pub fn search(&self, num: i32) -> OptionTreeNodeRc {
let mut cur = self.root.clone();
// Loop find, break after passing leaf nodes
while let Some(node) = cur.clone() {
match num.cmp(&node.borrow().val) {
// Target node is in cur's right subtree
Ordering::Greater => cur = node.borrow().right.clone(),
// Target node is in cur's left subtree
Ordering::Less => cur = node.borrow().left.clone(),
// Found target node, break loop
Ordering::Equal => break,
}
}
// Return target node
cur
}
/* Insert node */
pub fn insert(&mut self, num: i32) {
// If tree is empty, initialize root node
if self.root.is_none() {
self.root = Some(TreeNode::new(num));
return;
}
let mut cur = self.root.clone();
let mut pre = None;
// Loop find, break after passing leaf nodes
while let Some(node) = cur.clone() {
match num.cmp(&node.borrow().val) {
// Found duplicate node, thus return
Ordering::Equal => return,
// Insertion position is in cur's right subtree
Ordering::Greater => {
pre = cur.clone();
cur = node.borrow().right.clone();
}
// Insertion position is in cur's left subtree
Ordering::Less => {
pre = cur.clone();
cur = node.borrow().left.clone();
}
}
}
// Insert node
let pre = pre.unwrap();
let node = Some(TreeNode::new(num));
if num > pre.borrow().val {
pre.borrow_mut().right = node;
} else {
pre.borrow_mut().left = node;
}
}
/* Remove node */
pub fn remove(&mut self, num: i32) {
// If tree is empty, return
if self.root.is_none() {
return;
}
let mut cur = self.root.clone();
let mut pre = None;
// Loop find, break after passing leaf nodes
while let Some(node) = cur.clone() {
match num.cmp(&node.borrow().val) {
// Found node to be removed, break loop
Ordering::Equal => break,
// Node to be removed is in cur's right subtree
Ordering::Greater => {
pre = cur.clone();
cur = node.borrow().right.clone();
}
// Node to be removed is in cur's left subtree
Ordering::Less => {
pre = cur.clone();
cur = node.borrow().left.clone();
}
}
}
// If no node to be removed, return
if cur.is_none() {
return;
}
let cur = cur.unwrap();
let (left_child, right_child) = (cur.borrow().left.clone(), cur.borrow().right.clone());
match (left_child.clone(), right_child.clone()) {
// Number of child nodes = 0 or 1
(None, None) | (Some(_), None) | (None, Some(_)) => {
// When the number of child nodes = 0 / 1, child = nullptr / that child node
let child = left_child.or(right_child);
let pre = pre.unwrap();
// Remove node cur
if !Rc::ptr_eq(&cur, self.root.as_ref().unwrap()) {
let left = pre.borrow().left.clone();
if left.is_some() && Rc::ptr_eq(&left.as_ref().unwrap(), &cur) {
pre.borrow_mut().left = child;
} else {
pre.borrow_mut().right = child;
}
} else {
// If the removed node is the root, reassign the root
self.root = child;
}
}
// Number of child nodes = 2
(Some(_), Some(_)) => {
// Get the next node in in-order traversal of cur
let mut tmp = cur.borrow().right.clone();
while let Some(node) = tmp.clone() {
if node.borrow().left.is_some() {
tmp = node.borrow().left.clone();
} else {
break;
}
}
let tmpval = tmp.unwrap().borrow().val;
// Recursively remove node tmp
self.remove(tmpval);
// Replace cur with tmp
cur.borrow_mut().val = tmpval;
}
}
}
}
/* Driver Code */
fn main() {
/* Initialize binary search tree */
let mut bst = BinarySearchTree::new();
// Note that different insertion orders can result in various tree structures. This particular sequence creates a perfect binary tree
let nums = [8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15];
for &num in &nums {
bst.insert(num);
}
println!("\nInitialized binary tree is\n");
print_util::print_tree(bst.get_root().as_ref().unwrap());
/* Search node */
let node = bst.search(7);
println!(
"\nThe found node object is {:?}, node value = {}",
node.clone().unwrap(),
node.clone().unwrap().borrow().val
);
/* Insert node */
bst.insert(16);
println!("\nAfter inserting node 16, the binary tree is\n");
print_util::print_tree(bst.get_root().as_ref().unwrap());
/* Remove node */
bst.remove(1);
println!("\nAfter removing node 1, the binary tree is\n");
print_util::print_tree(bst.get_root().as_ref().unwrap());
bst.remove(2);
println!("\nAfter removing node 2, the binary tree is\n");
print_util::print_tree(bst.get_root().as_ref().unwrap());
bst.remove(4);
println!("\nAfter removing node 4, the binary tree is\n");
print_util::print_tree(bst.get_root().as_ref().unwrap());
}