hello-algo/en/codes/rust/chapter_stack_and_queue/array_deque.rs

163 lines
4.9 KiB
Rust

/*
* File: array_deque.rs
* Created Time: 2023-03-11
* Author: codingonion (coderonion@gmail.com)
*/
include!("../include/include.rs");
/* Double-ended queue class based on circular array */
struct ArrayDeque {
nums: Vec<i32>, // Array used to store elements of the double-ended queue
front: usize, // Front pointer, pointing to the front element
que_size: usize, // Length of the double-ended queue
}
impl ArrayDeque {
/* Constructor */
pub fn new(capacity: usize) -> Self {
Self {
nums: vec![0; capacity],
front: 0,
que_size: 0,
}
}
/* Get the capacity of the double-ended queue */
pub fn capacity(&self) -> usize {
self.nums.len()
}
/* Get the length of the double-ended queue */
pub fn size(&self) -> usize {
self.que_size
}
/* Determine if the double-ended queue is empty */
pub fn is_empty(&self) -> bool {
self.que_size == 0
}
/* Calculate circular array index */
fn index(&self, i: i32) -> usize {
// Implement circular array by modulo operation
// When i exceeds the tail of the array, return to the head
// When i exceeds the head of the array, return to the tail
return ((i + self.capacity() as i32) % self.capacity() as i32) as usize;
}
/* Front enqueue */
pub fn push_first(&mut self, num: i32) {
if self.que_size == self.capacity() {
println!("Double-ended queue is full");
return;
}
// Move the front pointer one position to the left
// Implement front crossing the head of the array to return to the tail by modulo operation
self.front = self.index(self.front as i32 - 1);
// Add num to the front
self.nums[self.front] = num;
self.que_size += 1;
}
/* Rear enqueue */
pub fn push_last(&mut self, num: i32) {
if self.que_size == self.capacity() {
println!("Double-ended queue is full");
return;
}
// Calculate rear pointer, pointing to rear index + 1
let rear = self.index(self.front as i32 + self.que_size as i32);
// Add num to the rear
self.nums[rear] = num;
self.que_size += 1;
}
/* Front dequeue */
fn pop_first(&mut self) -> i32 {
let num = self.peek_first();
// Move front pointer one position backward
self.front = self.index(self.front as i32 + 1);
self.que_size -= 1;
num
}
/* Rear dequeue */
fn pop_last(&mut self) -> i32 {
let num = self.peek_last();
self.que_size -= 1;
num
}
/* Access front element */
fn peek_first(&self) -> i32 {
if self.is_empty() {
panic!("Double-ended queue is empty")
};
self.nums[self.front]
}
/* Access rear element */
fn peek_last(&self) -> i32 {
if self.is_empty() {
panic!("Double-ended queue is empty")
};
// Calculate rear element index
let last = self.index(self.front as i32 + self.que_size as i32 - 1);
self.nums[last]
}
/* Return array for printing */
fn to_array(&self) -> Vec<i32> {
// Only convert elements within valid length range
let mut res = vec![0; self.que_size];
let mut j = self.front;
for i in 0..self.que_size {
res[i] = self.nums[self.index(j as i32)];
j += 1;
}
res
}
}
/* Driver Code */
fn main() {
/* Initialize double-ended queue */
let mut deque = ArrayDeque::new(10);
deque.push_last(3);
deque.push_last(2);
deque.push_last(5);
print!("Double-ended queue deque =");
print_util::print_array(&deque.to_array());
/* Access element */
let peek_first = deque.peek_first();
print!("\nFront element peek_first = {}", peek_first);
let peek_last = deque.peek_last();
print!("\nBack element peek_last = {}", peek_last);
/* Element enqueue */
deque.push_last(4);
print!("\nElement 4 enqueued at the tail, deque = ");
print_util::print_array(&deque.to_array());
deque.push_first(1);
print!("\nElement 1 enqueued at the head, deque = ");
print_util::print_array(&deque.to_array());
/* Element dequeue */
let pop_last = deque.pop_last();
print!("\nDeque tail element = {}, after dequeuing from the tail", pop_last);
print_util::print_array(&deque.to_array());
let pop_first = deque.pop_first();
print!("\nDeque front element = {}, after dequeuing from the front", pop_first);
print_util::print_array(&deque.to_array());
/* Get the length of the double-ended queue */
let size = deque.size();
print!("\nLength of the double-ended queue size = {}", size);
/* Determine if the double-ended queue is empty */
let is_empty = deque.is_empty();
print!("\nIs the double-ended queue empty = {}", is_empty);
}