hello-algo/en/codes/rust/chapter_heap/my_heap.rs

166 lines
4.5 KiB
Rust

/*
* File: my_heap.rs
* Created Time: 2023-07-16
* Author: night-cruise (2586447362@qq.com)
*/
include!("../include/include.rs");
/* Max-heap */
struct MaxHeap {
// Use vector instead of array to avoid needing to resize
max_heap: Vec<i32>,
}
impl MaxHeap {
/* Constructor, build heap based on input list */
fn new(nums: Vec<i32>) -> Self {
// Add all list elements into the heap
let mut heap = MaxHeap { max_heap: nums };
// Heapify all nodes except leaves
for i in (0..=Self::parent(heap.size() - 1)).rev() {
heap.sift_down(i);
}
heap
}
/* Get index of left child node */
fn left(i: usize) -> usize {
2 * i + 1
}
/* Get index of right child node */
fn right(i: usize) -> usize {
2 * i + 2
}
/* Get index of parent node */
fn parent(i: usize) -> usize {
(i - 1) / 2 // Integer division down
}
/* Swap elements */
fn swap(&mut self, i: usize, j: usize) {
self.max_heap.swap(i, j);
}
/* Get heap size */
fn size(&self) -> usize {
self.max_heap.len()
}
/* Determine if heap is empty */
fn is_empty(&self) -> bool {
self.max_heap.is_empty()
}
/* Access heap top element */
fn peek(&self) -> Option<i32> {
self.max_heap.first().copied()
}
/* Push the element into heap */
fn push(&mut self, val: i32) {
// Add node
self.max_heap.push(val);
// Heapify from bottom to top
self.sift_up(self.size() - 1);
}
/* Start heapifying node i, from bottom to top */
fn sift_up(&mut self, mut i: usize) {
loop {
// Node i is already the top node of the heap, end heapification
if i == 0 {
break;
}
// Get parent node of node i
let p = Self::parent(i);
// When "node needs no repair", end heapification
if self.max_heap[i] <= self.max_heap[p] {
break;
}
// Swap two nodes
self.swap(i, p);
// Loop upwards heapification
i = p;
}
}
/* Element exits heap */
fn pop(&mut self) -> i32 {
// Empty handling
if self.is_empty() {
panic!("index out of bounds");
}
// Swap the root node with the rightmost leaf node (swap the first element with the last element)
self.swap(0, self.size() - 1);
// Remove node
let val = self.max_heap.pop().unwrap();
// Heapify from top to bottom
self.sift_down(0);
// Return heap top element
val
}
/* Start heapifying node i, from top to bottom */
fn sift_down(&mut self, mut i: usize) {
loop {
// Determine the largest node among i, l, r, noted as ma
let (l, r, mut ma) = (Self::left(i), Self::right(i), i);
if l < self.size() && self.max_heap[l] > self.max_heap[ma] {
ma = l;
}
if r < self.size() && self.max_heap[r] > self.max_heap[ma] {
ma = r;
}
// If node i is the largest or indices l, r are out of bounds, no further heapification needed, break
if ma == i {
break;
}
// Swap two nodes
self.swap(i, ma);
// Loop downwards heapification
i = ma;
}
}
/* Print heap (binary tree) */
fn print(&self) {
print_util::print_heap(self.max_heap.clone());
}
}
/* Driver Code */
fn main() {
/* Initialize max-heap */
let mut max_heap = MaxHeap::new(vec![9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2]);
println!("\nEnter list and build heap");
max_heap.print();
/* Access heap top element */
let peek = max_heap.peek();
if let Some(peek) = peek {
println!("\nThe top element of the heap is {}", peek);
}
/* Push the element into heap */
let val = 7;
max_heap.push(val);
println!("\nElement {} after being added to the heap", val);
max_heap.print();
/* Pop the element at the heap top */
let peek = max_heap.pop();
println!("\nTop element {} after being removed from the heap", peek);
max_heap.print();
/* Get heap size */
let size = max_heap.size();
println!("\nThe number of elements in the heap is {}", size);
/* Determine if heap is empty */
let is_empty = max_heap.is_empty();
println!("\nIs the heap empty {}", is_empty);
}