hello-algo/en/codes/rust/chapter_computational_complexity/time_complexity.rs

171 lines
4.4 KiB
Rust

/*
* File: time_complexity.rs
* Created Time: 2023-01-10
* Author: xBLACICEx (xBLACKICEx@outlook.com), codingonion (coderonion@gmail.com)
*/
/* Constant complexity */
fn constant(n: i32) -> i32 {
_ = n;
let mut count = 0;
let size = 100_000;
for _ in 0..size {
count += 1;
}
count
}
/* Linear complexity */
fn linear(n: i32) -> i32 {
let mut count = 0;
for _ in 0..n {
count += 1;
}
count
}
/* Linear complexity (traversing an array) */
fn array_traversal(nums: &[i32]) -> i32 {
let mut count = 0;
// Loop count is proportional to the length of the array
for _ in nums {
count += 1;
}
count
}
/* Quadratic complexity */
fn quadratic(n: i32) -> i32 {
let mut count = 0;
// Loop count is squared in relation to the data size n
for _ in 0..n {
for _ in 0..n {
count += 1;
}
}
count
}
/* Quadratic complexity (bubble sort) */
fn bubble_sort(nums: &mut [i32]) -> i32 {
let mut count = 0; // Counter
// Outer loop: unsorted range is [0, i]
for i in (1..nums.len()).rev() {
// Inner loop: swap the largest element in the unsorted range [0, i] to the right end of the range
for j in 0..i {
if nums[j] > nums[j + 1] {
// Swap nums[j] and nums[j + 1]
let tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // Element swap includes 3 individual operations
}
}
}
count
}
/* Exponential complexity (loop implementation) */
fn exponential(n: i32) -> i32 {
let mut count = 0;
let mut base = 1;
// Cells split into two every round, forming the sequence 1, 2, 4, 8, ..., 2^(n-1)
for _ in 0..n {
for _ in 0..base {
count += 1
}
base *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
count
}
/* Exponential complexity (recursive implementation) */
fn exp_recur(n: i32) -> i32 {
if n == 1 {
return 1;
}
exp_recur(n - 1) + exp_recur(n - 1) + 1
}
/* Logarithmic complexity (loop implementation) */
fn logarithmic(mut n: i32) -> i32 {
let mut count = 0;
while n > 1 {
n = n / 2;
count += 1;
}
count
}
/* Logarithmic complexity (recursive implementation) */
fn log_recur(n: i32) -> i32 {
if n <= 1 {
return 0;
}
log_recur(n / 2) + 1
}
/* Linear logarithmic complexity */
fn linear_log_recur(n: i32) -> i32 {
if n <= 1 {
return 1;
}
let mut count = linear_log_recur(n / 2) + linear_log_recur(n / 2);
for _ in 0..n as i32 {
count += 1;
}
return count;
}
/* Factorial complexity (recursive implementation) */
fn factorial_recur(n: i32) -> i32 {
if n == 0 {
return 1;
}
let mut count = 0;
// From 1 split into n
for _ in 0..n {
count += factorial_recur(n - 1);
}
count
}
/* Driver Code */
fn main() {
// Can modify n to experience the trend of operation count changes under various complexities
let n: i32 = 8;
println!("Input data size n = {}", n);
let mut count = constant(n);
println!("Number of constant complexity operations = {}", count);
count = linear(n);
println!("Number of linear time operations = {}", count);
count = array_traversal(&vec![0; n as usize]);
println!("Number of linear time operations (array traversal) = {}", count);
count = quadratic(n);
println!("Number of quadratic time operations = {}", count);
let mut nums = (1..=n).rev().collect::<Vec<_>>(); // [n,n-1,...,2,1]
count = bubble_sort(&mut nums);
println!("Number of quadratic time operations (bubble sort) = {}", count);
count = exponential(n);
println!("Number of exponential time operations (loop implementation) = {}", count);
count = exp_recur(n);
println!("Number of exponential time operations (recursive implementation) = {}", count);
count = logarithmic(n);
println!("Number of logarithmic time operations (loop implementation) = {}", count);
count = log_recur(n);
println!("Number of logarithmic time operations (recursive implementation) = {}", count);
count = linear_log_recur(n);
println!("Number of log-linear time operations (recursive implementation) = {}", count);
count = factorial_recur(n);
println!("Number of factorial time operations (recursive implementation) = {}", count);
}