hello-algo/en/codes/c/chapter_heap/my_heap.c

153 lines
3.8 KiB
C

/**
* File: my_heap.c
* Created Time: 2023-01-15
* Author: Reanon (793584285@qq.com)
*/
#include "../utils/common.h"
#define MAX_SIZE 5000
/* Max-heap */
typedef struct {
// size represents the actual number of elements
int size;
// Use pre-allocated memory array to avoid resizing
int data[MAX_SIZE];
} MaxHeap;
// Function declaration
void siftDown(MaxHeap *maxHeap, int i);
void siftUp(MaxHeap *maxHeap, int i);
int parent(MaxHeap *maxHeap, int i);
/* Constructor, build a heap based on slice */
MaxHeap *newMaxHeap(int nums[], int size) {
// All elements entered into heap
MaxHeap *maxHeap = (MaxHeap *)malloc(sizeof(MaxHeap));
maxHeap->size = size;
memcpy(maxHeap->data, nums, size * sizeof(int));
for (int i = parent(maxHeap, size - 1); i >= 0; i--) {
// Heapify all nodes except leaves
siftDown(maxHeap, i);
}
return maxHeap;
}
/* Destructor */
void delMaxHeap(MaxHeap *maxHeap) {
// Free memory
free(maxHeap);
}
/* Get index of left child node */
int left(MaxHeap *maxHeap, int i) {
return 2 * i + 1;
}
/* Get index of right child node */
int right(MaxHeap *maxHeap, int i) {
return 2 * i + 2;
}
/* Get index of parent node */
int parent(MaxHeap *maxHeap, int i) {
return (i - 1) / 2; // Round down
}
/* Swap elements */
void swap(MaxHeap *maxHeap, int i, int j) {
int temp = maxHeap->data[i];
maxHeap->data[i] = maxHeap->data[j];
maxHeap->data[j] = temp;
}
/* Get heap size */
int size(MaxHeap *maxHeap) {
return maxHeap->size;
}
/* Determine if heap is empty */
int isEmpty(MaxHeap *maxHeap) {
return maxHeap->size == 0;
}
/* Access heap top element */
int peek(MaxHeap *maxHeap) {
return maxHeap->data[0];
}
/* Push the element into heap */
void push(MaxHeap *maxHeap, int val) {
// Normally, should not add so many nodes
if (maxHeap->size == MAX_SIZE) {
printf("heap is full!");
return;
}
// Add node
maxHeap->data[maxHeap->size] = val;
maxHeap->size++;
// Heapify from bottom to top
siftUp(maxHeap, maxHeap->size - 1);
}
/* Element exits heap */
int pop(MaxHeap *maxHeap) {
// Empty handling
if (isEmpty(maxHeap)) {
printf("heap is empty!");
return INT_MAX;
}
// Swap the root node with the rightmost leaf node (swap the first element with the last element)
swap(maxHeap, 0, size(maxHeap) - 1);
// Remove node
int val = maxHeap->data[maxHeap->size - 1];
maxHeap->size--;
// Heapify from top to bottom
siftDown(maxHeap, 0);
// Return heap top element
return val;
}
/* Start heapifying node i, from top to bottom */
void siftDown(MaxHeap *maxHeap, int i) {
while (true) {
// Determine the node with the maximum value among nodes i, l, r, denoted as max
int l = left(maxHeap, i);
int r = right(maxHeap, i);
int max = i;
if (l < size(maxHeap) && maxHeap->data[l] > maxHeap->data[max]) {
max = l;
}
if (r < size(maxHeap) && maxHeap->data[r] > maxHeap->data[max]) {
max = r;
}
// If node i is the largest or indices l, r are out of bounds, no further heapification needed, break
if (max == i) {
break;
}
// Swap two nodes
swap(maxHeap, i, max);
// Loop downwards heapification
i = max;
}
}
/* Start heapifying node i, from bottom to top */
void siftUp(MaxHeap *maxHeap, int i) {
while (true) {
// Get parent node of node i
int p = parent(maxHeap, i);
// When "crossing the root node" or "node does not need repair", end heapification
if (p < 0 || maxHeap->data[i] <= maxHeap->data[p]) {
break;
}
// Swap two nodes
swap(maxHeap, i, p);
// Loop upwards heapification
i = p;
}
}