hello-algo/en/codes/c/chapter_dynamic_programming/min_path_sum.c

135 lines
4.3 KiB
C

/**
* File: min_path_sum.c
* Created Time: 2023-10-02
* Author: Zuoxun (845242523@qq.com)
*/
#include "../utils/common.h"
// Assume maximum matrix row and column count is 100
#define MAX_SIZE 100
/* Find minimum value */
int myMin(int a, int b) {
return a < b ? a : b;
}
/* Minimum path sum: Brute force search */
int minPathSumDFS(int grid[MAX_SIZE][MAX_SIZE], int i, int j) {
// If it's the top-left cell, terminate the search
if (i == 0 && j == 0) {
return grid[0][0];
}
// If the row or column index is out of bounds, return a +∞ cost
if (i < 0 || j < 0) {
return INT_MAX;
}
// Calculate the minimum path cost from the top-left to (i-1, j) and (i, j-1)
int up = minPathSumDFS(grid, i - 1, j);
int left = minPathSumDFS(grid, i, j - 1);
// Return the minimum path cost from the top-left to (i, j)
return myMin(left, up) != INT_MAX ? myMin(left, up) + grid[i][j] : INT_MAX;
}
/* Minimum path sum: Memoized search */
int minPathSumDFSMem(int grid[MAX_SIZE][MAX_SIZE], int mem[MAX_SIZE][MAX_SIZE], int i, int j) {
// If it's the top-left cell, terminate the search
if (i == 0 && j == 0) {
return grid[0][0];
}
// If the row or column index is out of bounds, return a +∞ cost
if (i < 0 || j < 0) {
return INT_MAX;
}
// If there is a record, return it
if (mem[i][j] != -1) {
return mem[i][j];
}
// The minimum path cost from the left and top cells
int up = minPathSumDFSMem(grid, mem, i - 1, j);
int left = minPathSumDFSMem(grid, mem, i, j - 1);
// Record and return the minimum path cost from the top-left to (i, j)
mem[i][j] = myMin(left, up) != INT_MAX ? myMin(left, up) + grid[i][j] : INT_MAX;
return mem[i][j];
}
/* Minimum path sum: Dynamic programming */
int minPathSumDP(int grid[MAX_SIZE][MAX_SIZE], int n, int m) {
// Initialize dp table
int **dp = malloc(n * sizeof(int *));
for (int i = 0; i < n; i++) {
dp[i] = calloc(m, sizeof(int));
}
dp[0][0] = grid[0][0];
// State transition: first row
for (int j = 1; j < m; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
// State transition: first column
for (int i = 1; i < n; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
// State transition: the rest of the rows and columns
for (int i = 1; i < n; i++) {
for (int j = 1; j < m; j++) {
dp[i][j] = myMin(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
}
}
int res = dp[n - 1][m - 1];
// Free memory
for (int i = 0; i < n; i++) {
free(dp[i]);
}
return res;
}
/* Minimum path sum: Space-optimized dynamic programming */
int minPathSumDPComp(int grid[MAX_SIZE][MAX_SIZE], int n, int m) {
// Initialize dp table
int *dp = calloc(m, sizeof(int));
// State transition: first row
dp[0] = grid[0][0];
for (int j = 1; j < m; j++) {
dp[j] = dp[j - 1] + grid[0][j];
}
// State transition: the rest of the rows
for (int i = 1; i < n; i++) {
// State transition: first column
dp[0] = dp[0] + grid[i][0];
// State transition: the rest of the columns
for (int j = 1; j < m; j++) {
dp[j] = myMin(dp[j - 1], dp[j]) + grid[i][j];
}
}
int res = dp[m - 1];
// Free memory
free(dp);
return res;
}
/* Driver Code */
int main() {
int grid[MAX_SIZE][MAX_SIZE] = {{1, 3, 1, 5}, {2, 2, 4, 2}, {5, 3, 2, 1}, {4, 3, 5, 2}};
int n = 4, m = 4; // Matrix capacity is MAX_SIZE * MAX_SIZE, effective row and column count = n * m
// Brute force search
int res = minPathSumDFS(grid, n - 1, m - 1);
printf("Minimum path sum from the top-left to the bottom-right corner = %d\n", res);
// Memoized search
int mem[MAX_SIZE][MAX_SIZE];
memset(mem, -1, sizeof(mem));
res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
printf("Minimum path sum from the top-left to the bottom-right corner = %d\n", res);
// Dynamic programming
res = minPathSumDP(grid, n, m);
printf("Minimum path sum from the top-left to the bottom-right corner = %d\n", res);
// Space-optimized dynamic programming
res = minPathSumDPComp(grid, n, m);
printf("Minimum path sum from the top-left to the bottom-right corner = %d\n", res);
return 0;
}