hello-algo/en/codes/swift/chapter_dynamic_programming/knapsack.swift

111 lines
3.9 KiB
Swift

/**
* File: knapsack.swift
* Created Time: 2023-07-15
* Author: nuomi1 (nuomi1@qq.com)
*/
/* 0-1 Knapsack: Brute force search */
func knapsackDFS(wgt: [Int], val: [Int], i: Int, c: Int) -> Int {
// If all items have been chosen or the knapsack has no remaining capacity, return value 0
if i == 0 || c == 0 {
return 0
}
// If exceeding the knapsack capacity, can only choose not to put it in the knapsack
if wgt[i - 1] > c {
return knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)
}
// Calculate the maximum value of not putting in and putting in item i
let no = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)
let yes = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]
// Return the greater value of the two options
return max(no, yes)
}
/* 0-1 Knapsack: Memoized search */
func knapsackDFSMem(wgt: [Int], val: [Int], mem: inout [[Int]], i: Int, c: Int) -> Int {
// If all items have been chosen or the knapsack has no remaining capacity, return value 0
if i == 0 || c == 0 {
return 0
}
// If there is a record, return it
if mem[i][c] != -1 {
return mem[i][c]
}
// If exceeding the knapsack capacity, can only choose not to put it in the knapsack
if wgt[i - 1] > c {
return knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)
}
// Calculate the maximum value of not putting in and putting in item i
let no = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)
let yes = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]
// Record and return the greater value of the two options
mem[i][c] = max(no, yes)
return mem[i][c]
}
/* 0-1 Knapsack: Dynamic programming */
func knapsackDP(wgt: [Int], val: [Int], cap: Int) -> Int {
let n = wgt.count
// Initialize dp table
var dp = Array(repeating: Array(repeating: 0, count: cap + 1), count: n + 1)
// State transition
for i in 1 ... n {
for c in 1 ... cap {
if wgt[i - 1] > c {
// If exceeding the knapsack capacity, do not choose item i
dp[i][c] = dp[i - 1][c]
} else {
// The greater value between not choosing and choosing item i
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])
}
}
}
return dp[n][cap]
}
/* 0-1 Knapsack: Space-optimized dynamic programming */
func knapsackDPComp(wgt: [Int], val: [Int], cap: Int) -> Int {
let n = wgt.count
// Initialize dp table
var dp = Array(repeating: 0, count: cap + 1)
// State transition
for i in 1 ... n {
// Traverse in reverse order
for c in (1 ... cap).reversed() {
if wgt[i - 1] <= c {
// The greater value between not choosing and choosing item i
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
}
}
}
return dp[cap]
}
@main
enum Knapsack {
/* Driver Code */
static func main() {
let wgt = [10, 20, 30, 40, 50]
let val = [50, 120, 150, 210, 240]
let cap = 50
let n = wgt.count
// Brute force search
var res = knapsackDFS(wgt: wgt, val: val, i: n, c: cap)
print("Maximum value of items within the backpack capacity = \(res)")
// Memoized search
var mem = Array(repeating: Array(repeating: -1, count: cap + 1), count: n + 1)
res = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: n, c: cap)
print("Maximum value of items within the backpack capacity = \(res)")
// Dynamic programming
res = knapsackDP(wgt: wgt, val: val, cap: cap)
print("Maximum value of items within the backpack capacity = \(res)")
// Space-optimized dynamic programming
res = knapsackDPComp(wgt: wgt, val: val, cap: cap)
print("Maximum value of items within the backpack capacity = \(res)")
}
}