hello-algo/en/codes/kotlin/chapter_dynamic_programming/unbounded_knapsack.kt

68 lines
1.9 KiB
Kotlin

/**
* File: unbounded_knapsack.kt
* Created Time: 2024-01-25
* Author: curtishd (1023632660@qq.com)
*/
package chapter_dynamic_programming
import kotlin.math.max
/* Complete knapsack: Dynamic programming */
fun unboundedKnapsackDP(wgt: IntArray, _val: IntArray, cap: Int): Int {
val n = wgt.size
// Initialize dp table
val dp = Array(n + 1) { IntArray(cap + 1) }
// State transition
for (i in 1..n) {
for (c in 1..cap) {
if (wgt[i - 1] > c) {
// If exceeding the knapsack capacity, do not choose item i
dp[i][c] = dp[i - 1][c]
} else {
// The greater value between not choosing and choosing item i
dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + _val[i - 1])
}
}
}
return dp[n][cap]
}
/* Complete knapsack: Space-optimized dynamic programming */
fun unboundedKnapsackDPComp(
wgt: IntArray,
_val: IntArray,
cap: Int
): Int {
val n = wgt.size
// Initialize dp table
val dp = IntArray(cap + 1)
// State transition
for (i in 1..n) {
for (c in 1..cap) {
if (wgt[i - 1] > c) {
// If exceeding the knapsack capacity, do not choose item i
dp[c] = dp[c]
} else {
// The greater value between not choosing and choosing item i
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + _val[i - 1])
}
}
}
return dp[cap]
}
/* Driver Code */
fun main() {
val wgt = intArrayOf(1, 2, 3)
val _val = intArrayOf(5, 11, 15)
val cap = 4
// Dynamic programming
var res = unboundedKnapsackDP(wgt, _val, cap)
println("Maximum value of items without exceeding bag capacity = $res")
// Space-optimized dynamic programming
res = unboundedKnapsackDPComp(wgt, _val, cap)
println("Maximum value of items without exceeding bag capacity = $res")
}