hello-algo/en/codes/kotlin/chapter_dynamic_programming/min_path_sum.kt

132 lines
3.8 KiB
Kotlin

/**
* File: min_path_sum.kt
* Created Time: 2024-01-25
* Author: curtishd (1023632660@qq.com)
*/
package chapter_dynamic_programming
import kotlin.math.min
/* Minimum path sum: Brute force search */
fun minPathSumDFS(grid: Array<IntArray>, i: Int, j: Int): Int {
// If it's the top-left cell, terminate the search
if (i == 0 && j == 0) {
return grid[0][0]
}
// If the row or column index is out of bounds, return a +∞ cost
if (i < 0 || j < 0) {
return Int.MAX_VALUE
}
// Calculate the minimum path cost from the top-left to (i-1, j) and (i, j-1)
val up = minPathSumDFS(grid, i - 1, j)
val left = minPathSumDFS(grid, i, j - 1)
// Return the minimum path cost from the top-left to (i, j)
return min(left, up) + grid[i][j]
}
/* Minimum path sum: Memoized search */
fun minPathSumDFSMem(
grid: Array<IntArray>,
mem: Array<IntArray>,
i: Int,
j: Int
): Int {
// If it's the top-left cell, terminate the search
if (i == 0 && j == 0) {
return grid[0][0]
}
// If the row or column index is out of bounds, return a +∞ cost
if (i < 0 || j < 0) {
return Int.MAX_VALUE
}
// If there is a record, return it
if (mem[i][j] != -1) {
return mem[i][j]
}
// The minimum path cost from the left and top cells
val up = minPathSumDFSMem(grid, mem, i - 1, j)
val left = minPathSumDFSMem(grid, mem, i, j - 1)
// Record and return the minimum path cost from the top-left to (i, j)
mem[i][j] = min(left, up) + grid[i][j]
return mem[i][j]
}
/* Minimum path sum: Dynamic programming */
fun minPathSumDP(grid: Array<IntArray>): Int {
val n = grid.size
val m = grid[0].size
// Initialize dp table
val dp = Array(n) { IntArray(m) }
dp[0][0] = grid[0][0]
// State transition: first row
for (j in 1..<m) {
dp[0][j] = dp[0][j - 1] + grid[0][j]
}
// State transition: first column
for (i in 1..<n) {
dp[i][0] = dp[i - 1][0] + grid[i][0]
}
// State transition: the rest of the rows and columns
for (i in 1..<n) {
for (j in 1..<m) {
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]
}
}
return dp[n - 1][m - 1]
}
/* Minimum path sum: Space-optimized dynamic programming */
fun minPathSumDPComp(grid: Array<IntArray>): Int {
val n = grid.size
val m = grid[0].size
// Initialize dp table
val dp = IntArray(m)
// State transition: first row
dp[0] = grid[0][0]
for (j in 1..<m) {
dp[j] = dp[j - 1] + grid[0][j]
}
// State transition: the rest of the rows
for (i in 1..<n) {
// State transition: first column
dp[0] = dp[0] + grid[i][0]
// State transition: the rest of the columns
for (j in 1..<m) {
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]
}
}
return dp[m - 1]
}
/* Driver Code */
fun main() {
val grid = arrayOf(
intArrayOf(1, 3, 1, 5),
intArrayOf(2, 2, 4, 2),
intArrayOf(5, 3, 2, 1),
intArrayOf(4, 3, 5, 2)
)
val n = grid.size
val m = grid[0].size
// Brute force search
var res = minPathSumDFS(grid, n - 1, m - 1)
println("Minimum path sum from the top-left to the bottom-right corner = $res")
// Memoized search
val mem = Array(n) { IntArray(m) }
for (row in mem) {
row.fill(-1)
}
res = minPathSumDFSMem(grid, mem, n - 1, m - 1)
println("Minimum path sum from the top-left to the bottom-right corner = $res")
// Dynamic programming
res = minPathSumDP(grid)
println("Minimum path sum from the top-left to the bottom-right corner = $res")
// Space-optimized dynamic programming
res = minPathSumDPComp(grid)
println("Minimum path sum from the top-left to the bottom-right corner = $res")
}