hello-algo/en/codes/kotlin/chapter_computational_complexity/time_complexity.kt

168 lines
4.3 KiB
Kotlin

/**
* File: time_complexity.kt
* Created Time: 2024-01-25
* Author: curtishd (1023632660@qq.com)
*/
package chapter_computational_complexity.time_complexity
/* Constant complexity */
fun constant(n: Int): Int {
var count = 0
val size = 100000
for (i in 0..<size)
count++
return count
}
/* Linear complexity */
fun linear(n: Int): Int {
var count = 0
for (i in 0..<n)
count++
return count
}
/* Linear complexity (traversing an array) */
fun arrayTraversal(nums: IntArray): Int {
var count = 0
// Loop count is proportional to the length of the array
for (num in nums) {
count++
}
return count
}
/* Quadratic complexity */
fun quadratic(n: Int): Int {
var count = 0
// Loop count is squared in relation to the data size n
for (i in 0..<n) {
for (j in 0..<n) {
count++
}
}
return count
}
/* Quadratic complexity (bubble sort) */
fun bubbleSort(nums: IntArray): Int {
var count = 0 // Counter
// Outer loop: unsorted range is [0, i]
for (i in nums.size - 1 downTo 1) {
// Inner loop: swap the largest element in the unsorted range [0, i] to the right end of the range
for (j in 0..<i) {
if (nums[j] > nums[j + 1]) {
// Swap nums[j] and nums[j + 1]
val temp = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = temp
count += 3 // Element swap includes 3 individual operations
}
}
}
return count
}
/* Exponential complexity (loop implementation) */
fun exponential(n: Int): Int {
var count = 0
var base = 1
// Cells split into two every round, forming the sequence 1, 2, 4, 8, ..., 2^(n-1)
for (i in 0..<n) {
for (j in 0..<base) {
count++
}
base *= 2
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
}
/* Exponential complexity (recursive implementation) */
fun expRecur(n: Int): Int {
if (n == 1) {
return 1
}
return expRecur(n - 1) + expRecur(n - 1) + 1
}
/* Logarithmic complexity (loop implementation) */
fun logarithmic(n: Int): Int {
var n1 = n
var count = 0
while (n1 > 1) {
n1 /= 2
count++
}
return count
}
/* Logarithmic complexity (recursive implementation) */
fun logRecur(n: Int): Int {
if (n <= 1)
return 0
return logRecur(n / 2) + 1
}
/* Linear logarithmic complexity */
fun linearLogRecur(n: Int): Int {
if (n <= 1)
return 1
var count = linearLogRecur(n / 2) + linearLogRecur(n / 2)
for (i in 0..<n) {
count++
}
return count
}
/* Factorial complexity (recursive implementation) */
fun factorialRecur(n: Int): Int {
if (n == 0)
return 1
var count = 0
// From 1 split into n
for (i in 0..<n) {
count += factorialRecur(n - 1)
}
return count
}
/* Driver Code */
fun main() {
// Can modify n to experience the trend of operation count changes under various complexities
val n = 8
println("Input data size n = $n")
var count = constant(n)
println("Constant complexity operation count = $count")
count = linear(n)
println("Linear complexity operation count = $count")
count = arrayTraversal(IntArray(n))
println("Linear complexity (array traversal) operation count = $count")
count = quadratic(n)
println("Quadratic complexity operation count = $count")
val nums = IntArray(n)
for (i in 0..<n)
nums[i] = n - i // [n,n-1,...,2,1]
count = bubbleSort(nums)
println("Quadratic complexity (bubble sort) operation count = $count")
count = exponential(n)
println("Exponential complexity (loop implementation) operation count = $count")
count = expRecur(n)
println("Exponential complexity (recursive implementation) operation count = $count")
count = logarithmic(n)
println("Logarithmic complexity (loop implementation) operation count = $count")
count = logRecur(n)
println("Logarithmic complexity (recursive implementation) operation count = $count")
count = linearLogRecur(n)
println("Linear logarithmic time (recursive implementation) operation count = $count")
count = factorialRecur(n)
println("Factorial complexity (recursive implementation) operation count = $count")
}