hello-algo/en/codes/javascript/chapter_tree/binary_search_tree.js

140 lines
4.3 KiB
JavaScript

/**
* File: binary_search_tree.js
* Created Time: 2022-12-04
* Author: IsChristina (christinaxia77@foxmail.com)
*/
const { TreeNode } = require('../modules/TreeNode');
const { printTree } = require('../modules/PrintUtil');
/* Binary search tree */
class BinarySearchTree {
/* Constructor */
constructor() {
// Initialize empty tree
this.root = null;
}
/* Get binary tree root node */
getRoot() {
return this.root;
}
/* Search node */
search(num) {
let cur = this.root;
// Loop find, break after passing leaf nodes
while (cur !== null) {
// Target node is in cur's right subtree
if (cur.val < num) cur = cur.right;
// Target node is in cur's left subtree
else if (cur.val > num) cur = cur.left;
// Found target node, break loop
else break;
}
// Return target node
return cur;
}
/* Insert node */
insert(num) {
// If tree is empty, initialize root node
if (this.root === null) {
this.root = new TreeNode(num);
return;
}
let cur = this.root,
pre = null;
// Loop find, break after passing leaf nodes
while (cur !== null) {
// Found duplicate node, thus return
if (cur.val === num) return;
pre = cur;
// Insertion position is in cur's right subtree
if (cur.val < num) cur = cur.right;
// Insertion position is in cur's left subtree
else cur = cur.left;
}
// Insert node
const node = new TreeNode(num);
if (pre.val < num) pre.right = node;
else pre.left = node;
}
/* Remove node */
remove(num) {
// If tree is empty, return
if (this.root === null) return;
let cur = this.root,
pre = null;
// Loop find, break after passing leaf nodes
while (cur !== null) {
// Found node to be removed, break loop
if (cur.val === num) break;
pre = cur;
// Node to be removed is in cur's right subtree
if (cur.val < num) cur = cur.right;
// Node to be removed is in cur's left subtree
else cur = cur.left;
}
// If no node to be removed, return
if (cur === null) return;
// Number of child nodes = 0 or 1
if (cur.left === null || cur.right === null) {
// When the number of child nodes = 0/1, child = null/that child node
const child = cur.left !== null ? cur.left : cur.right;
// Remove node cur
if (cur !== this.root) {
if (pre.left === cur) pre.left = child;
else pre.right = child;
} else {
// If the removed node is the root, reassign the root
this.root = child;
}
}
// Number of child nodes = 2
else {
// Get the next node in in-order traversal of cur
let tmp = cur.right;
while (tmp.left !== null) {
tmp = tmp.left;
}
// Recursively remove node tmp
this.remove(tmp.val);
// Replace cur with tmp
cur.val = tmp.val;
}
}
}
/* Driver Code */
/* Initialize binary search tree */
const bst = new BinarySearchTree();
// Note that different insertion orders can result in various tree structures. This particular sequence creates a perfect binary tree
const nums = [8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15];
for (const num of nums) {
bst.insert(num);
}
console.log('\nInitialized binary tree is\n');
printTree(bst.getRoot());
/* Search node */
const node = bst.search(7);
console.log('\nFound node object ' + node + ', node value = ' + node.val);
/* Insert node */
bst.insert(16);
console.log('\nAfter inserting node 16, the binary tree is\n');
printTree(bst.getRoot());
/* Remove node */
bst.remove(1);
console.log('\nAfter removing node 1, the binary tree is\n');
printTree(bst.getRoot());
bst.remove(2);
console.log('\nAfter removing node 2, the binary tree is\n');
printTree(bst.getRoot());
bst.remove(4);
console.log('\nAfter removing node 4, the binary tree is\n');
printTree(bst.getRoot());