hello-algo/en/codes/javascript/chapter_tree/avl_tree.js

209 lines
6.6 KiB
JavaScript

/**
* File: avl_tree.js
* Created Time: 2023-02-05
* Author: what-is-me (whatisme@outlook.jp)
*/
const { TreeNode } = require('../modules/TreeNode');
const { printTree } = require('../modules/PrintUtil');
/* AVL tree*/
class AVLTree {
/* Constructor */
constructor() {
this.root = null; //Root node
}
/* Get node height */
height(node) {
// Empty node height is -1, leaf node height is 0
return node === null ? -1 : node.height;
}
/* Update node height */
#updateHeight(node) {
// Node height equals the height of the tallest subtree + 1
node.height =
Math.max(this.height(node.left), this.height(node.right)) + 1;
}
/* Get balance factor */
balanceFactor(node) {
// Empty node balance factor is 0
if (node === null) return 0;
// Node balance factor = left subtree height - right subtree height
return this.height(node.left) - this.height(node.right);
}
/* Right rotation operation */
#rightRotate(node) {
const child = node.left;
const grandChild = child.right;
// Rotate node to the right around child
child.right = node;
node.left = grandChild;
// Update node height
this.#updateHeight(node);
this.#updateHeight(child);
// Return the root of the subtree after rotation
return child;
}
/* Left rotation operation */
#leftRotate(node) {
const child = node.right;
const grandChild = child.left;
// Rotate node to the left around child
child.left = node;
node.right = grandChild;
// Update node height
this.#updateHeight(node);
this.#updateHeight(child);
// Return the root of the subtree after rotation
return child;
}
/* Perform rotation operation to restore balance to the subtree */
#rotate(node) {
// Get the balance factor of node
const balanceFactor = this.balanceFactor(node);
// Left-leaning tree
if (balanceFactor > 1) {
if (this.balanceFactor(node.left) >= 0) {
// Right rotation
return this.#rightRotate(node);
} else {
// First left rotation then right rotation
node.left = this.#leftRotate(node.left);
return this.#rightRotate(node);
}
}
// Right-leaning tree
if (balanceFactor < -1) {
if (this.balanceFactor(node.right) <= 0) {
// Left rotation
return this.#leftRotate(node);
} else {
// First right rotation then left rotation
node.right = this.#rightRotate(node.right);
return this.#leftRotate(node);
}
}
// Balanced tree, no rotation needed, return
return node;
}
/* Insert node */
insert(val) {
this.root = this.#insertHelper(this.root, val);
}
/* Recursively insert node (helper method) */
#insertHelper(node, val) {
if (node === null) return new TreeNode(val);
/* 1. Find insertion position and insert node */
if (val < node.val) node.left = this.#insertHelper(node.left, val);
else if (val > node.val)
node.right = this.#insertHelper(node.right, val);
else return node; // Do not insert duplicate nodes, return
this.#updateHeight(node); // Update node height
/* 2. Perform rotation operation to restore balance to the subtree */
node = this.#rotate(node);
// Return the root node of the subtree
return node;
}
/* Remove node */
remove(val) {
this.root = this.#removeHelper(this.root, val);
}
/* Recursively remove node (helper method) */
#removeHelper(node, val) {
if (node === null) return null;
/* 1. Find and remove the node */
if (val < node.val) node.left = this.#removeHelper(node.left, val);
else if (val > node.val)
node.right = this.#removeHelper(node.right, val);
else {
if (node.left === null || node.right === null) {
const child = node.left !== null ? node.left : node.right;
// Number of child nodes = 0, remove node and return
if (child === null) return null;
// Number of child nodes = 1, remove node
else node = child;
} else {
// Number of child nodes = 2, remove the next node in in-order traversal and replace the current node with it
let temp = node.right;
while (temp.left !== null) {
temp = temp.left;
}
node.right = this.#removeHelper(node.right, temp.val);
node.val = temp.val;
}
}
this.#updateHeight(node); // Update node height
/* 2. Perform rotation operation to restore balance to the subtree */
node = this.#rotate(node);
// Return the root node of the subtree
return node;
}
/* Search node */
search(val) {
let cur = this.root;
// Loop find, break after passing leaf nodes
while (cur !== null) {
// Target node is in cur's right subtree
if (cur.val < val) cur = cur.right;
// Target node is in cur's left subtree
else if (cur.val > val) cur = cur.left;
// Found target node, break loop
else break;
}
// Return target node
return cur;
}
}
function testInsert(tree, val) {
tree.insert(val);
console.log('\nAfter inserting node ' + val + ', the AVL tree is');
printTree(tree.root);
}
function testRemove(tree, val) {
tree.remove(val);
console.log('\nAfter removing node ' + val + ', the AVL tree is');
printTree(tree.root);
}
/* Driver Code */
/* Initialize empty AVL tree */
const avlTree = new AVLTree();
/* Insert node */
// Notice how the AVL tree maintains balance after inserting nodes
testInsert(avlTree, 1);
testInsert(avlTree, 2);
testInsert(avlTree, 3);
testInsert(avlTree, 4);
testInsert(avlTree, 5);
testInsert(avlTree, 8);
testInsert(avlTree, 7);
testInsert(avlTree, 9);
testInsert(avlTree, 10);
testInsert(avlTree, 6);
/* Insert duplicate node */
testInsert(avlTree, 7);
/* Remove node */
// Notice how the AVL tree maintains balance after removing nodes
testRemove(avlTree, 8); // Remove node with degree 0
testRemove(avlTree, 5); // Remove node with degree 1
testRemove(avlTree, 4); // Remove node with degree 2
/* Search node */
const node = avlTree.search(7);
console.log('\nFound node object', node, ', node value = ' + node.val);