hello-algo/en/codes/javascript/chapter_computational_complexity/time_complexity.js

156 lines
4.3 KiB
JavaScript

/**
* File: time_complexity.js
* Created Time: 2023-01-02
* Author: RiverTwilight (contact@rene.wang)
*/
/* Constant complexity */
function constant(n) {
let count = 0;
const size = 100000;
for (let i = 0; i < size; i++) count++;
return count;
}
/* Linear complexity */
function linear(n) {
let count = 0;
for (let i = 0; i < n; i++) count++;
return count;
}
/* Linear complexity (traversing an array) */
function arrayTraversal(nums) {
let count = 0;
// Loop count is proportional to the length of the array
for (let i = 0; i < nums.length; i++) {
count++;
}
return count;
}
/* Quadratic complexity */
function quadratic(n) {
let count = 0;
// Loop count is squared in relation to the data size n
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
count++;
}
}
return count;
}
/* Quadratic complexity (bubble sort) */
function bubbleSort(nums) {
let count = 0; // Counter
// Outer loop: unsorted range is [0, i]
for (let i = nums.length - 1; i > 0; i--) {
// Inner loop: swap the largest element in the unsorted range [0, i] to the right end of the range
for (let j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// Swap nums[j] and nums[j + 1]
let tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // Element swap includes 3 individual operations
}
}
}
return count;
}
/* Exponential complexity (loop implementation) */
function exponential(n) {
let count = 0,
base = 1;
// Cells split into two every round, forming the sequence 1, 2, 4, 8, ..., 2^(n-1)
for (let i = 0; i < n; i++) {
for (let j = 0; j < base; j++) {
count++;
}
base *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count;
}
/* Exponential complexity (recursive implementation) */
function expRecur(n) {
if (n === 1) return 1;
return expRecur(n - 1) + expRecur(n - 1) + 1;
}
/* Logarithmic complexity (loop implementation) */
function logarithmic(n) {
let count = 0;
while (n > 1) {
n = n / 2;
count++;
}
return count;
}
/* Logarithmic complexity (recursive implementation) */
function logRecur(n) {
if (n <= 1) return 0;
return logRecur(n / 2) + 1;
}
/* Linear logarithmic complexity */
function linearLogRecur(n) {
if (n <= 1) return 1;
let count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
for (let i = 0; i < n; i++) {
count++;
}
return count;
}
/* Factorial complexity (recursive implementation) */
function factorialRecur(n) {
if (n === 0) return 1;
let count = 0;
// From 1 split into n
for (let i = 0; i < n; i++) {
count += factorialRecur(n - 1);
}
return count;
}
/* Driver Code */
// Can modify n to experience the trend of operation count changes under various complexities
const n = 8;
console.log('Input data size n =' + n);
let count = constant(n);
console.log('Number of constant complexity operations =' + count);
count = linear(n);
console.log('Number of linear complexity operations =' + count);
count = arrayTraversal(new Array(n));
console.log('Number of linear complexity operations (traversing the array) =' + count);
count = quadratic(n);
console.log('Number of quadratic order operations =' + count);
let nums = new Array(n);
for (let i = 0; i < n; i++) nums[i] = n - i; // [n,n-1,...,2,1]
count = bubbleSort(nums);
console.log('Number of quadratic order operations (bubble sort) =' + count);
count = exponential(n);
console.log('Number of exponential complexity operations (implemented by loop) =' + count);
count = expRecur(n);
console.log('Number of exponential complexity operations (implemented by recursion) =' + count);
count = logarithmic(n);
console.log('Number of logarithmic complexity operations (implemented by loop) =' + count);
count = logRecur(n);
console.log('Number of logarithmic complexity operations (implemented by recursion) =' + count);
count = linearLogRecur(n);
console.log('Number of linear logarithmic complexity operations (implemented by recursion) =' + count);
count = factorialRecur(n);
console.log('Number of factorial complexity operations (implemented by recursion) =' + count);