hello-algo/en/codes/javascript/chapter_computational_complexity/space_complexity.js

104 lines
2.5 KiB
JavaScript

/**
* File: space_complexity.js
* Created Time: 2023-02-05
* Author: Justin (xiefahit@gmail.com)
*/
const { ListNode } = require('../modules/ListNode');
const { TreeNode } = require('../modules/TreeNode');
const { printTree } = require('../modules/PrintUtil');
/* Function */
function constFunc() {
// Perform some operations
return 0;
}
/* Constant complexity */
function constant(n) {
// Constants, variables, objects occupy O(1) space
const a = 0;
const b = 0;
const nums = new Array(10000);
const node = new ListNode(0);
// Variables in a loop occupy O(1) space
for (let i = 0; i < n; i++) {
const c = 0;
}
// Functions in a loop occupy O(1) space
for (let i = 0; i < n; i++) {
constFunc();
}
}
/* Linear complexity */
function linear(n) {
// Array of length n occupies O(n) space
const nums = new Array(n);
// A list of length n occupies O(n) space
const nodes = [];
for (let i = 0; i < n; i++) {
nodes.push(new ListNode(i));
}
// A hash table of length n occupies O(n) space
const map = new Map();
for (let i = 0; i < n; i++) {
map.set(i, i.toString());
}
}
/* Linear complexity (recursive implementation) */
function linearRecur(n) {
console.log(`递归 n = ${n}`);
if (n === 1) return;
linearRecur(n - 1);
}
/* Quadratic complexity */
function quadratic(n) {
// Matrix occupies O(n^2) space
const numMatrix = Array(n)
.fill(null)
.map(() => Array(n).fill(null));
// A two-dimensional list occupies O(n^2) space
const numList = [];
for (let i = 0; i < n; i++) {
const tmp = [];
for (let j = 0; j < n; j++) {
tmp.push(0);
}
numList.push(tmp);
}
}
/* Quadratic complexity (recursive implementation) */
function quadraticRecur(n) {
if (n <= 0) return 0;
const nums = new Array(n);
console.log(`递归 n = ${n} 中的 nums 长度 = ${nums.length}`);
return quadraticRecur(n - 1);
}
/* Exponential complexity (building a full binary tree) */
function buildTree(n) {
if (n === 0) return null;
const root = new TreeNode(0);
root.left = buildTree(n - 1);
root.right = buildTree(n - 1);
return root;
}
/* Driver Code */
const n = 5;
// Constant complexity
constant(n);
// Linear complexity
linear(n);
linearRecur(n);
// Quadratic complexity
quadratic(n);
quadraticRecur(n);
// Exponential complexity
const root = buildTree(n);
printTree(root);