58 lines
1.7 KiB
Go
58 lines
1.7 KiB
Go
// File: n_queens.go
|
|
// Created Time: 2023-05-09
|
|
// Author: Reanon (793584285@qq.com)
|
|
|
|
package chapter_backtracking
|
|
|
|
/* Backtracking algorithm: n queens */
|
|
func backtrack(row, n int, state *[][]string, res *[][][]string, cols, diags1, diags2 *[]bool) {
|
|
// When all rows are placed, record the solution
|
|
if row == n {
|
|
newState := make([][]string, len(*state))
|
|
for i, _ := range newState {
|
|
newState[i] = make([]string, len((*state)[0]))
|
|
copy(newState[i], (*state)[i])
|
|
|
|
}
|
|
*res = append(*res, newState)
|
|
return
|
|
}
|
|
// Traverse all columns
|
|
for col := 0; col < n; col++ {
|
|
// Calculate the main and minor diagonals corresponding to the cell
|
|
diag1 := row - col + n - 1
|
|
diag2 := row + col
|
|
// Pruning: do not allow queens on the column, main diagonal, or minor diagonal of the cell
|
|
if !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] {
|
|
// Attempt: place the queen in the cell
|
|
(*state)[row][col] = "Q"
|
|
(*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = true, true, true
|
|
// Place the next row
|
|
backtrack(row+1, n, state, res, cols, diags1, diags2)
|
|
// Retract: restore the cell to an empty spot
|
|
(*state)[row][col] = "#"
|
|
(*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = false, false, false
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Solve n queens */
|
|
func nQueens(n int) [][][]string {
|
|
// Initialize an n*n size chessboard, where 'Q' represents the queen and '#' represents an empty spot
|
|
state := make([][]string, n)
|
|
for i := 0; i < n; i++ {
|
|
row := make([]string, n)
|
|
for i := 0; i < n; i++ {
|
|
row[i] = "#"
|
|
}
|
|
state[i] = row
|
|
}
|
|
// Record columns with queens
|
|
cols := make([]bool, n)
|
|
diags1 := make([]bool, 2*n-1)
|
|
diags2 := make([]bool, 2*n-1)
|
|
res := make([][][]string, 0)
|
|
backtrack(0, n, &state, &res, &cols, &diags1, &diags2)
|
|
return res
|
|
}
|