hello-algo/en/codes/csharp/chapter_dynamic_programming/min_path_sum.cs

128 lines
4.3 KiB
C#

/**
* File: min_path_sum.cs
* Created Time: 2023-07-10
* Author: hpstory (hpstory1024@163.com)
*/
namespace hello_algo.chapter_dynamic_programming;
public class min_path_sum {
/* Minimum path sum: Brute force search */
int MinPathSumDFS(int[][] grid, int i, int j) {
// If it's the top-left cell, terminate the search
if (i == 0 && j == 0) {
return grid[0][0];
}
// If the row or column index is out of bounds, return a +∞ cost
if (i < 0 || j < 0) {
return int.MaxValue;
}
// Calculate the minimum path cost from the top-left to (i-1, j) and (i, j-1)
int up = MinPathSumDFS(grid, i - 1, j);
int left = MinPathSumDFS(grid, i, j - 1);
// Return the minimum path cost from the top-left to (i, j)
return Math.Min(left, up) + grid[i][j];
}
/* Minimum path sum: Memoized search */
int MinPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {
// If it's the top-left cell, terminate the search
if (i == 0 && j == 0) {
return grid[0][0];
}
// If the row or column index is out of bounds, return a +∞ cost
if (i < 0 || j < 0) {
return int.MaxValue;
}
// If there is a record, return it
if (mem[i][j] != -1) {
return mem[i][j];
}
// The minimum path cost from the left and top cells
int up = MinPathSumDFSMem(grid, mem, i - 1, j);
int left = MinPathSumDFSMem(grid, mem, i, j - 1);
// Record and return the minimum path cost from the top-left to (i, j)
mem[i][j] = Math.Min(left, up) + grid[i][j];
return mem[i][j];
}
/* Minimum path sum: Dynamic programming */
int MinPathSumDP(int[][] grid) {
int n = grid.Length, m = grid[0].Length;
// Initialize dp table
int[,] dp = new int[n, m];
dp[0, 0] = grid[0][0];
// State transition: first row
for (int j = 1; j < m; j++) {
dp[0, j] = dp[0, j - 1] + grid[0][j];
}
// State transition: first column
for (int i = 1; i < n; i++) {
dp[i, 0] = dp[i - 1, 0] + grid[i][0];
}
// State transition: the rest of the rows and columns
for (int i = 1; i < n; i++) {
for (int j = 1; j < m; j++) {
dp[i, j] = Math.Min(dp[i, j - 1], dp[i - 1, j]) + grid[i][j];
}
}
return dp[n - 1, m - 1];
}
/* Minimum path sum: Space-optimized dynamic programming */
int MinPathSumDPComp(int[][] grid) {
int n = grid.Length, m = grid[0].Length;
// Initialize dp table
int[] dp = new int[m];
dp[0] = grid[0][0];
// State transition: first row
for (int j = 1; j < m; j++) {
dp[j] = dp[j - 1] + grid[0][j];
}
// State transition: the rest of the rows
for (int i = 1; i < n; i++) {
// State transition: first column
dp[0] = dp[0] + grid[i][0];
// State transition: the rest of the columns
for (int j = 1; j < m; j++) {
dp[j] = Math.Min(dp[j - 1], dp[j]) + grid[i][j];
}
}
return dp[m - 1];
}
[Test]
public void Test() {
int[][] grid =
[
[1, 3, 1, 5],
[2, 2, 4, 2],
[5, 3, 2, 1],
[4, 3, 5, 2]
];
int n = grid.Length, m = grid[0].Length;
// Brute force search
int res = MinPathSumDFS(grid, n - 1, m - 1);
Console.WriteLine("The minimum path sum from the top left to the bottom right corner is" + res);
// Memoized search
int[][] mem = new int[n][];
for (int i = 0; i < n; i++) {
mem[i] = new int[m];
Array.Fill(mem[i], -1);
}
res = MinPathSumDFSMem(grid, mem, n - 1, m - 1);
Console.WriteLine("The minimum path sum from the top left to the bottom right corner is" + res);
// Dynamic programming
res = MinPathSumDP(grid);
Console.WriteLine("The minimum path sum from the top left to the bottom right corner is" + res);
// Space-optimized dynamic programming
res = MinPathSumDPComp(grid);
Console.WriteLine("The minimum path sum from the top left to the bottom right corner is" + res);
}
}