hello-algo/en/codes/c/chapter_tree/avl_tree.c

260 lines
7.0 KiB
C

/**
* File: avl_tree.c
* Created Time: 2023-01-15
* Author: Reanon (793584285@qq.com)
*/
#include "../utils/common.h"
/* AVL tree structure */
typedef struct {
TreeNode *root;
} AVLTree;
/* Constructor */
AVLTree *newAVLTree() {
AVLTree *tree = (AVLTree *)malloc(sizeof(AVLTree));
tree->root = NULL;
return tree;
}
/* Destructor */
void delAVLTree(AVLTree *tree) {
freeMemoryTree(tree->root);
free(tree);
}
/* Get node height */
int height(TreeNode *node) {
// Empty node height is -1, leaf node height is 0
if (node != NULL) {
return node->height;
}
return -1;
}
/* Update node height */
void updateHeight(TreeNode *node) {
int lh = height(node->left);
int rh = height(node->right);
// Node height equals the height of the tallest subtree + 1
if (lh > rh) {
node->height = lh + 1;
} else {
node->height = rh + 1;
}
}
/* Get balance factor */
int balanceFactor(TreeNode *node) {
// Empty node balance factor is 0
if (node == NULL) {
return 0;
}
// Node balance factor = left subtree height - right subtree height
return height(node->left) - height(node->right);
}
/* Right rotation operation */
TreeNode *rightRotate(TreeNode *node) {
TreeNode *child, *grandChild;
child = node->left;
grandChild = child->right;
// Rotate node to the right around child
child->right = node;
node->left = grandChild;
// Update node height
updateHeight(node);
updateHeight(child);
// Return the root of the subtree after rotation
return child;
}
/* Left rotation operation */
TreeNode *leftRotate(TreeNode *node) {
TreeNode *child, *grandChild;
child = node->right;
grandChild = child->left;
// Rotate node to the left around child
child->left = node;
node->right = grandChild;
// Update node height
updateHeight(node);
updateHeight(child);
// Return the root of the subtree after rotation
return child;
}
/* Perform rotation operation to restore balance to the subtree */
TreeNode *rotate(TreeNode *node) {
// Get the balance factor of node
int bf = balanceFactor(node);
// Left-leaning tree
if (bf > 1) {
if (balanceFactor(node->left) >= 0) {
// Right rotation
return rightRotate(node);
} else {
// First left rotation then right rotation
node->left = leftRotate(node->left);
return rightRotate(node);
}
}
// Right-leaning tree
if (bf < -1) {
if (balanceFactor(node->right) <= 0) {
// Left rotation
return leftRotate(node);
} else {
// First right rotation then left rotation
node->right = rightRotate(node->right);
return leftRotate(node);
}
}
// Balanced tree, no rotation needed, return
return node;
}
/* Recursive insertion of nodes (helper function) */
TreeNode *insertHelper(TreeNode *node, int val) {
if (node == NULL) {
return newTreeNode(val);
}
/* 1. Find insertion position and insert node */
if (val < node->val) {
node->left = insertHelper(node->left, val);
} else if (val > node->val) {
node->right = insertHelper(node->right, val);
} else {
// Do not insert duplicate nodes, return
return node;
}
// Update node height
updateHeight(node);
/* 2. Perform rotation operation to restore balance to the subtree */
node = rotate(node);
// Return the root node of the subtree
return node;
}
/* Insert node */
void insert(AVLTree *tree, int val) {
tree->root = insertHelper(tree->root, val);
}
/* Recursive removal of nodes (helper function) */
TreeNode *removeHelper(TreeNode *node, int val) {
TreeNode *child, *grandChild;
if (node == NULL) {
return NULL;
}
/* 1. Find and remove the node */
if (val < node->val) {
node->left = removeHelper(node->left, val);
} else if (val > node->val) {
node->right = removeHelper(node->right, val);
} else {
if (node->left == NULL || node->right == NULL) {
child = node->left;
if (node->right != NULL) {
child = node->right;
}
// Number of child nodes = 0, remove node and return
if (child == NULL) {
return NULL;
} else {
// Number of child nodes = 1, remove node
node = child;
}
} else {
// Number of child nodes = 2, remove the next node in in-order traversal and replace the current node with it
TreeNode *temp = node->right;
while (temp->left != NULL) {
temp = temp->left;
}
int tempVal = temp->val;
node->right = removeHelper(node->right, temp->val);
node->val = tempVal;
}
}
// Update node height
updateHeight(node);
/* 2. Perform rotation operation to restore balance to the subtree */
node = rotate(node);
// Return the root node of the subtree
return node;
}
/* Remove node */
// Due to the inclusion of stdio.h, cannot use the keyword 'remove' here
void removeItem(AVLTree *tree, int val) {
TreeNode *root = removeHelper(tree->root, val);
}
/* Search node */
TreeNode *search(AVLTree *tree, int val) {
TreeNode *cur = tree->root;
// Loop find, break after passing leaf nodes
while (cur != NULL) {
if (cur->val < val) {
// Target node is in cur's right subtree
cur = cur->right;
} else if (cur->val > val) {
// Target node is in cur's left subtree
cur = cur->left;
} else {
// Found target node, break loop
break;
}
}
// Found target node, break loop
return cur;
}
void testInsert(AVLTree *tree, int val) {
insert(tree, val);
printf("\nAfter inserting node %d, the AVL tree is \n", val);
printTree(tree->root);
}
void testRemove(AVLTree *tree, int val) {
removeItem(tree, val);
printf("\nAfter removing node %d, the AVL tree is \n", val);
printTree(tree->root);
}
/* Driver Code */
int main() {
/* Initialize empty AVL tree */
AVLTree *tree = (AVLTree *)newAVLTree();
/* Insert node */
// Notice how the AVL tree maintains balance after inserting nodes
testInsert(tree, 1);
testInsert(tree, 2);
testInsert(tree, 3);
testInsert(tree, 4);
testInsert(tree, 5);
testInsert(tree, 8);
testInsert(tree, 7);
testInsert(tree, 9);
testInsert(tree, 10);
testInsert(tree, 6);
/* Insert duplicate node */
testInsert(tree, 7);
/* Remove node */
// Notice how the AVL tree maintains balance after removing nodes
testRemove(tree, 8); // Remove node with degree 0
testRemove(tree, 5); // Remove node with degree 1
testRemove(tree, 4); // Remove node with degree 2
/* Search node */
TreeNode *node = search(tree, 7);
printf("\nFound node object node value = %d \n", node->val);
// Free memory
delAVLTree(tree);
return 0;
}