173 lines
4.5 KiB
Swift
173 lines
4.5 KiB
Swift
/**
|
|
* File: time_complexity.swift
|
|
* Created Time: 2022-12-26
|
|
* Author: nuomi1 (nuomi1@qq.com)
|
|
*/
|
|
|
|
/* Constant complexity */
|
|
func constant(n: Int) -> Int {
|
|
var count = 0
|
|
let size = 100_000
|
|
for _ in 0 ..< size {
|
|
count += 1
|
|
}
|
|
return count
|
|
}
|
|
|
|
/* Linear complexity */
|
|
func linear(n: Int) -> Int {
|
|
var count = 0
|
|
for _ in 0 ..< n {
|
|
count += 1
|
|
}
|
|
return count
|
|
}
|
|
|
|
/* Linear complexity (traversing an array) */
|
|
func arrayTraversal(nums: [Int]) -> Int {
|
|
var count = 0
|
|
// Loop count is proportional to the length of the array
|
|
for _ in nums {
|
|
count += 1
|
|
}
|
|
return count
|
|
}
|
|
|
|
/* Quadratic complexity */
|
|
func quadratic(n: Int) -> Int {
|
|
var count = 0
|
|
// Loop count is squared in relation to the data size n
|
|
for _ in 0 ..< n {
|
|
for _ in 0 ..< n {
|
|
count += 1
|
|
}
|
|
}
|
|
return count
|
|
}
|
|
|
|
/* Quadratic complexity (bubble sort) */
|
|
func bubbleSort(nums: inout [Int]) -> Int {
|
|
var count = 0 // Counter
|
|
// Outer loop: unsorted range is [0, i]
|
|
for i in nums.indices.dropFirst().reversed() {
|
|
// Inner loop: swap the largest element in the unsorted range [0, i] to the right end of the range
|
|
for j in 0 ..< i {
|
|
if nums[j] > nums[j + 1] {
|
|
// Swap nums[j] and nums[j + 1]
|
|
let tmp = nums[j]
|
|
nums[j] = nums[j + 1]
|
|
nums[j + 1] = tmp
|
|
count += 3 // Element swap includes 3 individual operations
|
|
}
|
|
}
|
|
}
|
|
return count
|
|
}
|
|
|
|
/* Exponential complexity (loop implementation) */
|
|
func exponential(n: Int) -> Int {
|
|
var count = 0
|
|
var base = 1
|
|
// Cells split into two every round, forming the sequence 1, 2, 4, 8, ..., 2^(n-1)
|
|
for _ in 0 ..< n {
|
|
for _ in 0 ..< base {
|
|
count += 1
|
|
}
|
|
base *= 2
|
|
}
|
|
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
|
return count
|
|
}
|
|
|
|
/* Exponential complexity (recursive implementation) */
|
|
func expRecur(n: Int) -> Int {
|
|
if n == 1 {
|
|
return 1
|
|
}
|
|
return expRecur(n: n - 1) + expRecur(n: n - 1) + 1
|
|
}
|
|
|
|
/* Logarithmic complexity (loop implementation) */
|
|
func logarithmic(n: Int) -> Int {
|
|
var count = 0
|
|
var n = n
|
|
while n > 1 {
|
|
n = n / 2
|
|
count += 1
|
|
}
|
|
return count
|
|
}
|
|
|
|
/* Logarithmic complexity (recursive implementation) */
|
|
func logRecur(n: Int) -> Int {
|
|
if n <= 1 {
|
|
return 0
|
|
}
|
|
return logRecur(n: n / 2) + 1
|
|
}
|
|
|
|
/* Linear logarithmic complexity */
|
|
func linearLogRecur(n: Int) -> Int {
|
|
if n <= 1 {
|
|
return 1
|
|
}
|
|
var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)
|
|
for _ in stride(from: 0, to: n, by: 1) {
|
|
count += 1
|
|
}
|
|
return count
|
|
}
|
|
|
|
/* Factorial complexity (recursive implementation) */
|
|
func factorialRecur(n: Int) -> Int {
|
|
if n == 0 {
|
|
return 1
|
|
}
|
|
var count = 0
|
|
// From 1 split into n
|
|
for _ in 0 ..< n {
|
|
count += factorialRecur(n: n - 1)
|
|
}
|
|
return count
|
|
}
|
|
|
|
@main
|
|
enum TimeComplexity {
|
|
/* Driver Code */
|
|
static func main() {
|
|
// Can modify n to experience the trend of operation count changes under various complexities
|
|
let n = 8
|
|
print("Input data size n = \(n)")
|
|
|
|
var count = constant(n: n)
|
|
print("Constant complexity operation count = \(count)")
|
|
|
|
count = linear(n: n)
|
|
print("Linear complexity operation count = \(count)")
|
|
count = arrayTraversal(nums: Array(repeating: 0, count: n))
|
|
print("Linear complexity (array traversal) operation count = \(count)")
|
|
|
|
count = quadratic(n: n)
|
|
print("Quadratic complexity operation count = \(count)")
|
|
var nums = Array(stride(from: n, to: 0, by: -1)) // [n,n-1,...,2,1]
|
|
count = bubbleSort(nums: &nums)
|
|
print("Quadratic complexity (bubble sort) operation count = \(count)")
|
|
|
|
count = exponential(n: n)
|
|
print("Exponential complexity (loop implementation) operation count = \(count)")
|
|
count = expRecur(n: n)
|
|
print("Exponential complexity (recursive implementation) operation count = \(count)")
|
|
|
|
count = logarithmic(n: n)
|
|
print("Logarithmic complexity (loop implementation) operation count = \(count)")
|
|
count = logRecur(n: n)
|
|
print("Logarithmic complexity (recursive implementation) operation count = \(count)")
|
|
|
|
count = linearLogRecur(n: n)
|
|
print("Log-linear complexity (recursive implementation) operation count = \(count)")
|
|
|
|
count = factorialRecur(n: n)
|
|
print("Factorial complexity (recursive implementation) operation count = \(count)")
|
|
}
|
|
}
|