hello-algo/en/codes/swift/chapter_computational_complexity/space_complexity.swift

99 lines
2.3 KiB
Swift

/**
* File: space_complexity.swift
* Created Time: 2023-01-01
* Author: nuomi1 (nuomi1@qq.com)
*/
import utils
/* Function */
@discardableResult
func function() -> Int {
// Perform some operations
return 0
}
/* Constant complexity */
func constant(n: Int) {
// Constants, variables, objects occupy O(1) space
let a = 0
var b = 0
let nums = Array(repeating: 0, count: 10000)
let node = ListNode(x: 0)
// Variables in a loop occupy O(1) space
for _ in 0 ..< n {
let c = 0
}
// Functions in a loop occupy O(1) space
for _ in 0 ..< n {
function()
}
}
/* Linear complexity */
func linear(n: Int) {
// Array of length n occupies O(n) space
let nums = Array(repeating: 0, count: n)
// A list of length n occupies O(n) space
let nodes = (0 ..< n).map { ListNode(x: $0) }
// A hash table of length n occupies O(n) space
let map = Dictionary(uniqueKeysWithValues: (0 ..< n).map { ($0, "\($0)") })
}
/* Linear complexity (recursive implementation) */
func linearRecur(n: Int) {
print("Recursion n = \(n)")
if n == 1 {
return
}
linearRecur(n: n - 1)
}
/* Quadratic complexity */
func quadratic(n: Int) {
// A two-dimensional list occupies O(n^2) space
let numList = Array(repeating: Array(repeating: 0, count: n), count: n)
}
/* Quadratic complexity (recursive implementation) */
@discardableResult
func quadraticRecur(n: Int) -> Int {
if n <= 0 {
return 0
}
// Array nums length = n, n-1, ..., 2, 1
let nums = Array(repeating: 0, count: n)
print("Recursion n = \(n) with nums length = \(nums.count)")
return quadraticRecur(n: n - 1)
}
/* Exponential complexity (building a full binary tree) */
func buildTree(n: Int) -> TreeNode? {
if n == 0 {
return nil
}
let root = TreeNode(x: 0)
root.left = buildTree(n: n - 1)
root.right = buildTree(n: n - 1)
return root
}
@main
enum SpaceComplexity {
/* Driver Code */
static func main() {
let n = 5
// Constant complexity
constant(n: n)
// Linear complexity
linear(n: n)
linearRecur(n: n)
// Quadratic complexity
quadratic(n: n)
quadraticRecur(n: n)
// Exponential complexity
let root = buildTree(n: n)
PrintUtil.printTree(root: root)
}
}