hello-algo/en/codes/kotlin/chapter_tree/avl_tree.kt

223 lines
6.9 KiB
Kotlin

/**
* File: avl_tree.kt
* Created Time: 2024-01-25
* Author: curtishd (1023632660@qq.com)
*/
package chapter_tree
import utils.TreeNode
import utils.printTree
import kotlin.math.max
/* AVL tree */
class AVLTree {
var root: TreeNode? = null // Root node
/* Get node height */
fun height(node: TreeNode?): Int {
// Empty node height is -1, leaf node height is 0
return node?.height ?: -1
}
/* Update node height */
private fun updateHeight(node: TreeNode?) {
// Node height equals the height of the tallest subtree + 1
node?.height = max(height(node?.left), height(node?.right)) + 1
}
/* Get balance factor */
fun balanceFactor(node: TreeNode?): Int {
// Empty node balance factor is 0
if (node == null) return 0
// Node balance factor = left subtree height - right subtree height
return height(node.left) - height(node.right)
}
/* Right rotation operation */
private fun rightRotate(node: TreeNode?): TreeNode {
val child = node!!.left
val grandChild = child!!.right
// Rotate node to the right around child
child.right = node
node.left = grandChild
// Update node height
updateHeight(node)
updateHeight(child)
// Return the root of the subtree after rotation
return child
}
/* Left rotation operation */
private fun leftRotate(node: TreeNode?): TreeNode {
val child = node!!.right
val grandChild = child!!.left
// Rotate node to the left around child
child.left = node
node.right = grandChild
// Update node height
updateHeight(node)
updateHeight(child)
// Return the root of the subtree after rotation
return child
}
/* Perform rotation operation to restore balance to the subtree */
private fun rotate(node: TreeNode): TreeNode {
// Get the balance factor of node
val balanceFactor = balanceFactor(node)
// Left-leaning tree
if (balanceFactor > 1) {
if (balanceFactor(node.left) >= 0) {
// Right rotation
return rightRotate(node)
} else {
// First left rotation then right rotation
node.left = leftRotate(node.left)
return rightRotate(node)
}
}
// Right-leaning tree
if (balanceFactor < -1) {
if (balanceFactor(node.right) <= 0) {
// Left rotation
return leftRotate(node)
} else {
// First right rotation then left rotation
node.right = rightRotate(node.right)
return leftRotate(node)
}
}
// Balanced tree, no rotation needed, return
return node
}
/* Insert node */
fun insert(_val: Int) {
root = insertHelper(root, _val)
}
/* Recursively insert node (helper method) */
private fun insertHelper(n: TreeNode?, _val: Int): TreeNode {
if (n == null)
return TreeNode(_val)
var node = n
/* 1. Find insertion position and insert node */
if (_val < node._val)
node.left = insertHelper(node.left, _val)
else if (_val > node._val)
node.right = insertHelper(node.right, _val)
else
return node // Do not insert duplicate nodes, return
updateHeight(node) // Update node height
/* 2. Perform rotation operation to restore balance to the subtree */
node = rotate(node)
// Return the root node of the subtree
return node
}
/* Remove node */
fun remove(_val: Int) {
root = removeHelper(root, _val)
}
/* Recursively remove node (helper method) */
private fun removeHelper(n: TreeNode?, _val: Int): TreeNode? {
var node = n ?: return null
/* 1. Find and remove the node */
if (_val < node._val)
node.left = removeHelper(node.left, _val)
else if (_val > node._val)
node.right = removeHelper(node.right, _val)
else {
if (node.left == null || node.right == null) {
val child = if (node.left != null)
node.left
else
node.right
// Number of child nodes = 0, remove node and return
if (child == null)
return null
// Number of child nodes = 1, remove node
else
node = child
} else {
// Number of child nodes = 2, remove the next node in in-order traversal and replace the current node with it
var temp = node.right
while (temp!!.left != null) {
temp = temp.left
}
node.right = removeHelper(node.right, temp._val)
node._val = temp._val
}
}
updateHeight(node) // Update node height
/* 2. Perform rotation operation to restore balance to the subtree */
node = rotate(node)
// Return the root node of the subtree
return node
}
/* Search node */
fun search(_val: Int): TreeNode? {
var cur = root
// Loop find, break after passing leaf nodes
while (cur != null) {
// Target node is in cur's right subtree
cur = if (cur._val < _val)
cur.right!!
// Target node is in cur's left subtree
else if (cur._val > _val)
cur.left
// Found target node, break loop
else
break
}
// Return target node
return cur
}
}
fun testInsert(tree: AVLTree, _val: Int) {
tree.insert(_val)
println("\nAfter inserting node $_val, the AVL tree is")
printTree(tree.root)
}
fun testRemove(tree: AVLTree, _val: Int) {
tree.remove(_val)
println("\nAfter removing node $_val, the AVL tree is")
printTree(tree.root)
}
/* Driver Code */
fun main() {
/* Initialize empty AVL tree */
val avlTree = AVLTree()
/* Insert node */
// Notice how the AVL tree maintains balance after inserting nodes
testInsert(avlTree, 1)
testInsert(avlTree, 2)
testInsert(avlTree, 3)
testInsert(avlTree, 4)
testInsert(avlTree, 5)
testInsert(avlTree, 8)
testInsert(avlTree, 7)
testInsert(avlTree, 9)
testInsert(avlTree, 10)
testInsert(avlTree, 6)
/* Insert duplicate node */
testInsert(avlTree, 7)
/* Remove node */
// Notice how the AVL tree maintains balance after removing nodes
testRemove(avlTree, 8) // Remove node with degree 0
testRemove(avlTree, 5) // Remove node with degree 1
testRemove(avlTree, 4) // Remove node with degree 2
/* Search node */
val node = avlTree.search(7)
println("\nFound node object $node, node value = ${node?._val}")
}