hello-algo/en/codes/kotlin/chapter_dynamic_programming/knapsack.kt

125 lines
3.8 KiB
Kotlin

/**
* File: knapsack.kt
* Created Time: 2024-01-25
* Author: curtishd (1023632660@qq.com)
*/
package chapter_dynamic_programming
import kotlin.math.max
/* 0-1 Knapsack: Brute force search */
fun knapsackDFS(
wgt: IntArray,
_val: IntArray,
i: Int,
c: Int
): Int {
// If all items have been chosen or the knapsack has no remaining capacity, return value 0
if (i == 0 || c == 0) {
return 0
}
// If exceeding the knapsack capacity, can only choose not to put it in the knapsack
if (wgt[i - 1] > c) {
return knapsackDFS(wgt, _val, i - 1, c)
}
// Calculate the maximum value of not putting in and putting in item i
val no = knapsackDFS(wgt, _val, i - 1, c)
val yes = knapsackDFS(wgt, _val, i - 1, c - wgt[i - 1]) + _val[i - 1]
// Return the greater value of the two options
return max(no, yes)
}
/* 0-1 Knapsack: Memoized search */
fun knapsackDFSMem(
wgt: IntArray,
_val: IntArray,
mem: Array<IntArray>,
i: Int,
c: Int
): Int {
// If all items have been chosen or the knapsack has no remaining capacity, return value 0
if (i == 0 || c == 0) {
return 0
}
// If there is a record, return it
if (mem[i][c] != -1) {
return mem[i][c]
}
// If exceeding the knapsack capacity, can only choose not to put it in the knapsack
if (wgt[i - 1] > c) {
return knapsackDFSMem(wgt, _val, mem, i - 1, c)
}
// Calculate the maximum value of not putting in and putting in item i
val no = knapsackDFSMem(wgt, _val, mem, i - 1, c)
val yes = knapsackDFSMem(wgt, _val, mem, i - 1, c - wgt[i - 1]) + _val[i - 1]
// Record and return the greater value of the two options
mem[i][c] = max(no, yes)
return mem[i][c]
}
/* 0-1 Knapsack: Dynamic programming */
fun knapsackDP(wgt: IntArray, _val: IntArray, cap: Int): Int {
val n = wgt.size
// Initialize dp table
val dp = Array(n + 1) { IntArray(cap + 1) }
// State transition
for (i in 1..n) {
for (c in 1..cap) {
if (wgt[i - 1] > c) {
// If exceeding the knapsack capacity, do not choose item i
dp[i][c] = dp[i - 1][c]
} else {
// The greater value between not choosing and choosing item i
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + _val[i - 1])
}
}
}
return dp[n][cap]
}
/* 0-1 Knapsack: Space-optimized dynamic programming */
fun knapsackDPComp(wgt: IntArray, _val: IntArray, cap: Int): Int {
val n = wgt.size
// Initialize dp table
val dp = IntArray(cap + 1)
// State transition
for (i in 1..n) {
// Traverse in reverse order
for (c in cap downTo 1) {
if (wgt[i - 1] <= c) {
// The greater value between not choosing and choosing item i
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + _val[i - 1])
}
}
}
return dp[cap]
}
/* Driver Code */
fun main() {
val wgt = intArrayOf(10, 20, 30, 40, 50)
val _val = intArrayOf(50, 120, 150, 210, 240)
val cap = 50
val n = wgt.size
// Brute force search
var res = knapsackDFS(wgt, _val, n, cap)
println("Maximum value of items without exceeding bag capacity = $res")
// Memoized search
val mem = Array(n + 1) { IntArray(cap + 1) }
for (row in mem) {
row.fill(-1)
}
res = knapsackDFSMem(wgt, _val, mem, n, cap)
println("Maximum value of items without exceeding bag capacity = $res")
// Dynamic programming
res = knapsackDP(wgt, _val, cap)
println("Maximum value of items without exceeding bag capacity = $res")
// Space-optimized dynamic programming
res = knapsackDPComp(wgt, _val, cap)
println("Maximum value of items without exceeding bag capacity = $res")
}