hello-algo/en/codes/dart/chapter_dynamic_programming/min_path_sum.dart

121 lines
3.7 KiB
Dart

/**
* File: min_path_sum.dart
* Created Time: 2023-08-11
* Author: liuyuxin (gvenusleo@gmail.com)
*/
import 'dart:math';
/* Minimum path sum: Brute force search */
int minPathSumDFS(List<List<int>> grid, int i, int j) {
// If it's the top-left cell, terminate the search
if (i == 0 && j == 0) {
return grid[0][0];
}
// If the row or column index is out of bounds, return a +∞ cost
if (i < 0 || j < 0) {
// In Dart, the int type is a fixed-range integer, there is no value representing "infinity"
return BigInt.from(2).pow(31).toInt();
}
// Calculate the minimum path cost from the top-left to (i-1, j) and (i, j-1)
int up = minPathSumDFS(grid, i - 1, j);
int left = minPathSumDFS(grid, i, j - 1);
// Return the minimum path cost from the top-left to (i, j)
return min(left, up) + grid[i][j];
}
/* Minimum path sum: Memoized search */
int minPathSumDFSMem(List<List<int>> grid, List<List<int>> mem, int i, int j) {
// If it's the top-left cell, terminate the search
if (i == 0 && j == 0) {
return grid[0][0];
}
// If the row or column index is out of bounds, return a +∞ cost
if (i < 0 || j < 0) {
// In Dart, the int type is a fixed-range integer, there is no value representing "infinity"
return BigInt.from(2).pow(31).toInt();
}
// If there is a record, return it
if (mem[i][j] != -1) {
return mem[i][j];
}
// The minimum path cost from the left and top cells
int up = minPathSumDFSMem(grid, mem, i - 1, j);
int left = minPathSumDFSMem(grid, mem, i, j - 1);
// Record and return the minimum path cost from the top-left to (i, j)
mem[i][j] = min(left, up) + grid[i][j];
return mem[i][j];
}
/* Minimum path sum: Dynamic programming */
int minPathSumDP(List<List<int>> grid) {
int n = grid.length, m = grid[0].length;
// Initialize dp table
List<List<int>> dp = List.generate(n, (i) => List.filled(m, 0));
dp[0][0] = grid[0][0];
// State transition: first row
for (int j = 1; j < m; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
// State transition: first column
for (int i = 1; i < n; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
// State transition: the rest of the rows and columns
for (int i = 1; i < n; i++) {
for (int j = 1; j < m; j++) {
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
}
}
return dp[n - 1][m - 1];
}
/* Minimum path sum: Space-optimized dynamic programming */
int minPathSumDPComp(List<List<int>> grid) {
int n = grid.length, m = grid[0].length;
// Initialize dp table
List<int> dp = List.filled(m, 0);
dp[0] = grid[0][0];
for (int j = 1; j < m; j++) {
dp[j] = dp[j - 1] + grid[0][j];
}
// State transition: the rest of the rows
for (int i = 1; i < n; i++) {
// State transition: first column
dp[0] = dp[0] + grid[i][0];
// State transition: the rest of the columns
for (int j = 1; j < m; j++) {
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];
}
}
return dp[m - 1];
}
/* Driver Code */
void main() {
List<List<int>> grid = [
[1, 3, 1, 5],
[2, 2, 4, 2],
[5, 3, 2, 1],
[4, 3, 5, 2],
];
int n = grid.length, m = grid[0].length;
// Brute force search
int res = minPathSumDFS(grid, n - 1, m - 1);
print("Minimum path sum from the top-left to the bottom-right corner = $res");
// Memoized search
List<List<int>> mem = List.generate(n, (i) => List.filled(m, -1));
res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
print("Minimum path sum from the top-left to the bottom-right corner = $res");
// Dynamic programming
res = minPathSumDP(grid);
print("Minimum path sum from the top-left to the bottom-right corner = $res");
// Space-optimized dynamic programming
res = minPathSumDPComp(grid);
print("Minimum path sum from the top-left to the bottom-right corner = $res");
}