hello-algo/en/codes/csharp/chapter_tree/binary_search_tree.cs

161 lines
4.8 KiB
C#

/**
* File: binary_search_tree.cs
* Created Time: 2022-12-23
* Author: haptear (haptear@hotmail.com)
*/
namespace hello_algo.chapter_tree;
class BinarySearchTree {
TreeNode? root;
public BinarySearchTree() {
// Initialize empty tree
root = null;
}
/* Get binary tree root node */
public TreeNode? GetRoot() {
return root;
}
/* Search node */
public TreeNode? Search(int num) {
TreeNode? cur = root;
// Loop find, break after passing leaf nodes
while (cur != null) {
// Target node is in cur's right subtree
if (cur.val < num) cur =
cur.right;
// Target node is in cur's left subtree
else if (cur.val > num)
cur = cur.left;
// Found target node, break loop
else
break;
}
// Return target node
return cur;
}
/* Insert node */
public void Insert(int num) {
// If tree is empty, initialize root node
if (root == null) {
root = new TreeNode(num);
return;
}
TreeNode? cur = root, pre = null;
// Loop find, break after passing leaf nodes
while (cur != null) {
// Found duplicate node, thus return
if (cur.val == num)
return;
pre = cur;
// Insertion position is in cur's right subtree
if (cur.val < num)
cur = cur.right;
// Insertion position is in cur's left subtree
else
cur = cur.left;
}
// Insert node
TreeNode node = new(num);
if (pre != null) {
if (pre.val < num)
pre.right = node;
else
pre.left = node;
}
}
/* Remove node */
public void Remove(int num) {
// If tree is empty, return
if (root == null)
return;
TreeNode? cur = root, pre = null;
// Loop find, break after passing leaf nodes
while (cur != null) {
// Found node to be removed, break loop
if (cur.val == num)
break;
pre = cur;
// Node to be removed is in cur's right subtree
if (cur.val < num)
cur = cur.right;
// Node to be removed is in cur's left subtree
else
cur = cur.left;
}
// If no node to be removed, return
if (cur == null)
return;
// Number of child nodes = 0 or 1
if (cur.left == null || cur.right == null) {
// When the number of child nodes = 0/1, child = null/that child node
TreeNode? child = cur.left ?? cur.right;
// Remove node cur
if (cur != root) {
if (pre!.left == cur)
pre.left = child;
else
pre.right = child;
} else {
// If the removed node is the root, reassign the root
root = child;
}
}
// Number of child nodes = 2
else {
// Get the next node in in-order traversal of cur
TreeNode? tmp = cur.right;
while (tmp.left != null) {
tmp = tmp.left;
}
// Recursively remove node tmp
Remove(tmp.val!.Value);
// Replace cur with tmp
cur.val = tmp.val;
}
}
}
public class binary_search_tree {
[Test]
public void Test() {
/* Initialize binary search tree */
BinarySearchTree bst = new();
// Note that different insertion orders can result in various tree structures. This particular sequence creates a perfect binary tree
int[] nums = [8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15];
foreach (int num in nums) {
bst.Insert(num);
}
Console.WriteLine("\nInitialized binary tree is\n");
PrintUtil.PrintTree(bst.GetRoot());
/* Search node */
TreeNode? node = bst.Search(7);
Console.WriteLine("\nThe found node object is " + node + ", node value =" + node?.val);
/* Insert node */
bst.Insert(16);
Console.WriteLine("\nAfter inserting node 16, the binary tree is\n");
PrintUtil.PrintTree(bst.GetRoot());
/* Remove node */
bst.Remove(1);
Console.WriteLine("\nAfter removing node 1, the binary tree is\n");
PrintUtil.PrintTree(bst.GetRoot());
bst.Remove(2);
Console.WriteLine("\nAfter removing node 2, the binary tree is\n");
PrintUtil.PrintTree(bst.GetRoot());
bst.Remove(4);
Console.WriteLine("\nAfter removing node 4, the binary tree is\n");
PrintUtil.PrintTree(bst.GetRoot());
}
}