217 lines
7.0 KiB
C#
217 lines
7.0 KiB
C#
/**
|
|
* File: avl_tree.cs
|
|
* Created Time: 2022-12-23
|
|
* Author: haptear (haptear@hotmail.com)
|
|
*/
|
|
|
|
namespace hello_algo.chapter_tree;
|
|
|
|
/* AVL tree */
|
|
class AVLTree {
|
|
public TreeNode? root; // Root node
|
|
|
|
/* Get node height */
|
|
int Height(TreeNode? node) {
|
|
// Empty node height is -1, leaf node height is 0
|
|
return node == null ? -1 : node.height;
|
|
}
|
|
|
|
/* Update node height */
|
|
void UpdateHeight(TreeNode node) {
|
|
// Node height equals the height of the tallest subtree + 1
|
|
node.height = Math.Max(Height(node.left), Height(node.right)) + 1;
|
|
}
|
|
|
|
/* Get balance factor */
|
|
public int BalanceFactor(TreeNode? node) {
|
|
// Empty node balance factor is 0
|
|
if (node == null) return 0;
|
|
// Node balance factor = left subtree height - right subtree height
|
|
return Height(node.left) - Height(node.right);
|
|
}
|
|
|
|
/* Right rotation operation */
|
|
TreeNode? RightRotate(TreeNode? node) {
|
|
TreeNode? child = node?.left;
|
|
TreeNode? grandChild = child?.right;
|
|
// Rotate node to the right around child
|
|
child.right = node;
|
|
node.left = grandChild;
|
|
// Update node height
|
|
UpdateHeight(node);
|
|
UpdateHeight(child);
|
|
// Return the root of the subtree after rotation
|
|
return child;
|
|
}
|
|
|
|
/* Left rotation operation */
|
|
TreeNode? LeftRotate(TreeNode? node) {
|
|
TreeNode? child = node?.right;
|
|
TreeNode? grandChild = child?.left;
|
|
// Rotate node to the left around child
|
|
child.left = node;
|
|
node.right = grandChild;
|
|
// Update node height
|
|
UpdateHeight(node);
|
|
UpdateHeight(child);
|
|
// Return the root of the subtree after rotation
|
|
return child;
|
|
}
|
|
|
|
/* Perform rotation operation to restore balance to the subtree */
|
|
TreeNode? Rotate(TreeNode? node) {
|
|
// Get the balance factor of node
|
|
int balanceFactorInt = BalanceFactor(node);
|
|
// Left-leaning tree
|
|
if (balanceFactorInt > 1) {
|
|
if (BalanceFactor(node?.left) >= 0) {
|
|
// Right rotation
|
|
return RightRotate(node);
|
|
} else {
|
|
// First left rotation then right rotation
|
|
node!.left = LeftRotate(node!.left);
|
|
return RightRotate(node);
|
|
}
|
|
}
|
|
// Right-leaning tree
|
|
if (balanceFactorInt < -1) {
|
|
if (BalanceFactor(node?.right) <= 0) {
|
|
// Left rotation
|
|
return LeftRotate(node);
|
|
} else {
|
|
// First right rotation then left rotation
|
|
node!.right = RightRotate(node!.right);
|
|
return LeftRotate(node);
|
|
}
|
|
}
|
|
// Balanced tree, no rotation needed, return
|
|
return node;
|
|
}
|
|
|
|
/* Insert node */
|
|
public void Insert(int val) {
|
|
root = InsertHelper(root, val);
|
|
}
|
|
|
|
/* Recursively insert node (helper method) */
|
|
TreeNode? InsertHelper(TreeNode? node, int val) {
|
|
if (node == null) return new TreeNode(val);
|
|
/* 1. Find insertion position and insert node */
|
|
if (val < node.val)
|
|
node.left = InsertHelper(node.left, val);
|
|
else if (val > node.val)
|
|
node.right = InsertHelper(node.right, val);
|
|
else
|
|
return node; // Do not insert duplicate nodes, return
|
|
UpdateHeight(node); // Update node height
|
|
/* 2. Perform rotation operation to restore balance to the subtree */
|
|
node = Rotate(node);
|
|
// Return the root node of the subtree
|
|
return node;
|
|
}
|
|
|
|
/* Remove node */
|
|
public void Remove(int val) {
|
|
root = RemoveHelper(root, val);
|
|
}
|
|
|
|
/* Recursively remove node (helper method) */
|
|
TreeNode? RemoveHelper(TreeNode? node, int val) {
|
|
if (node == null) return null;
|
|
/* 1. Find and remove the node */
|
|
if (val < node.val)
|
|
node.left = RemoveHelper(node.left, val);
|
|
else if (val > node.val)
|
|
node.right = RemoveHelper(node.right, val);
|
|
else {
|
|
if (node.left == null || node.right == null) {
|
|
TreeNode? child = node.left ?? node.right;
|
|
// Number of child nodes = 0, remove node and return
|
|
if (child == null)
|
|
return null;
|
|
// Number of child nodes = 1, remove node
|
|
else
|
|
node = child;
|
|
} else {
|
|
// Number of child nodes = 2, remove the next node in in-order traversal and replace the current node with it
|
|
TreeNode? temp = node.right;
|
|
while (temp.left != null) {
|
|
temp = temp.left;
|
|
}
|
|
node.right = RemoveHelper(node.right, temp.val!.Value);
|
|
node.val = temp.val;
|
|
}
|
|
}
|
|
UpdateHeight(node); // Update node height
|
|
/* 2. Perform rotation operation to restore balance to the subtree */
|
|
node = Rotate(node);
|
|
// Return the root node of the subtree
|
|
return node;
|
|
}
|
|
|
|
/* Search node */
|
|
public TreeNode? Search(int val) {
|
|
TreeNode? cur = root;
|
|
// Loop find, break after passing leaf nodes
|
|
while (cur != null) {
|
|
// Target node is in cur's right subtree
|
|
if (cur.val < val)
|
|
cur = cur.right;
|
|
// Target node is in cur's left subtree
|
|
else if (cur.val > val)
|
|
cur = cur.left;
|
|
// Found target node, break loop
|
|
else
|
|
break;
|
|
}
|
|
// Return target node
|
|
return cur;
|
|
}
|
|
}
|
|
|
|
public class avl_tree {
|
|
static void TestInsert(AVLTree tree, int val) {
|
|
tree.Insert(val);
|
|
Console.WriteLine("\nAfter inserting node " + val + ", the AVL tree is");
|
|
PrintUtil.PrintTree(tree.root);
|
|
}
|
|
|
|
static void TestRemove(AVLTree tree, int val) {
|
|
tree.Remove(val);
|
|
Console.WriteLine("\nAfter removing node " + val + ", the AVL tree is");
|
|
PrintUtil.PrintTree(tree.root);
|
|
}
|
|
|
|
[Test]
|
|
public void Test() {
|
|
/* Initialize empty AVL tree */
|
|
AVLTree avlTree = new();
|
|
|
|
/* Insert node */
|
|
// Notice how the AVL tree maintains balance after inserting nodes
|
|
TestInsert(avlTree, 1);
|
|
TestInsert(avlTree, 2);
|
|
TestInsert(avlTree, 3);
|
|
TestInsert(avlTree, 4);
|
|
TestInsert(avlTree, 5);
|
|
TestInsert(avlTree, 8);
|
|
TestInsert(avlTree, 7);
|
|
TestInsert(avlTree, 9);
|
|
TestInsert(avlTree, 10);
|
|
TestInsert(avlTree, 6);
|
|
|
|
/* Insert duplicate node */
|
|
TestInsert(avlTree, 7);
|
|
|
|
/* Remove node */
|
|
// Notice how the AVL tree maintains balance after removing nodes
|
|
TestRemove(avlTree, 8); // Remove node with degree 0
|
|
TestRemove(avlTree, 5); // Remove node with degree 1
|
|
TestRemove(avlTree, 4); // Remove node with degree 2
|
|
|
|
/* Search node */
|
|
TreeNode? node = avlTree.Search(7);
|
|
Console.WriteLine("\nThe found node object is " + node + ", node value =" + node?.val);
|
|
}
|
|
}
|