// File: LinkedList.cs // Created Time: 2022-12-19 // Author: SayoKun (373484252@qq.com) using System; using System.Linq; namespace hello_algo.chapter_computational_complexity { public class time_complexity { /// /// 常数阶 /// /// /// int constant(int n) { int count = 0; int size = 100000; for (int i = 0; i < size; i++) count++; return count; } /// /// 线性阶 /// /// /// int linear(int n) { int count = 0; for (int i = 0; i < n; i++) count++; return count; } /// /// 线性阶(遍历数组) /// /// /// int arrayTraversal(int[] nums) { int count = 0; // 循环次数与数组长度成正比 foreach (int num in nums) { count++; } return count; } /// /// 平方阶 /// /// /// int quadratic(int n) { int count = 0; // 循环次数与数组长度成平方关系 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { count++; } } return count; } /// /// 平方阶(冒泡排序) /// /// /// int bubbleSort(int[] nums) { int count = 0; // 计数器 // 外循环:待排序元素数量为 n-1, n-2, ..., 1 for (int i = nums.Length - 1; i > 0; i--) { // 内循环:冒泡操作 for (int j = 0; j < i; j++) { if (nums[j] > nums[j + 1]) { // 交换 nums[j] 与 nums[j + 1] int tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; count += 3; // 元素交换包含 3 个单元操作 } } } return count; } /// /// 指数阶(循环实现) /// /// /// int exponential(int n) { int count = 0, baseNum = 1; // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) for (int i = 0; i < n; i++) { for (int j = 0; j < baseNum; j++) { count++; } baseNum *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } /// /// 指数阶(递归实现) /// /// /// int expRecur(int n) { if (n == 1) return 1; return expRecur(n - 1) + expRecur(n - 1) + 1; } /// /// 对数阶(循环实现) /// /// /// int logarithmic(float n) { int count = 0; while (n > 1) { n = n / 2; count++; } return count; } /// /// 对数阶(递归实现) /// /// /// int logRecur(float n) { if (n <= 1) return 0; return logRecur(n / 2) + 1; } /// /// 线性对数阶 /// /// /// int linearLogRecur(float n) { if (n <= 1) return 1; int count = linearLogRecur(n / 2) + linearLogRecur(n / 2); for (int i = 0; i < n; i++) { count++; } return count; } /// /// 阶乘阶(递归实现) /// /// 递归数 /// int factorialRecur(int n) { if (n == 0) return 1; int count = 0; // 从 1 个分裂出 n 个 for (int i = 0; i < n; i++) { count += factorialRecur(n - 1); } return count; } /// /// 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 /// /// 数组大小 /// int[] randomNumbers(int n) { int[] nums = new int[n]; // 生成数组 nums = { 1, 2, 3, ..., n } for (int i = 0; i < n; i++) { nums[i] = i + 1; } // 随机打乱数组元素 nums = nums.OrderBy(num => System.Random.Shared.Next()).ToArray(); return nums; } /// /// 查找数组 nums 中数字 1 所在索引 /// /// 索引数组 /// int findOne(in Span nums) => nums.IndexOf(1); void worstBestTimeComplexity() { for (int i = 0; i < 10; i++) { int n = 100; int[] nums = randomNumbers(n); int index = findOne(nums); System.Console.WriteLine($"打乱后的数组为 [{string.Join(",", nums)}]"); System.Console.WriteLine($"数字 1 的索引为 [{index}]"); } } /// /// Driver Code /// public void main() { // 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势 int n = 8; System.Console.WriteLine("输入数据大小 n = " + n); int count = constant(n); System.Console.WriteLine("常数阶的计算操作数量 = " + count); count = linear(n); System.Console.WriteLine("线性阶的计算操作数量 = " + count); count = arrayTraversal(new int[n]); System.Console.WriteLine("线性阶(遍历数组)的计算操作数量 = " + count); count = quadratic(n); System.Console.WriteLine("平方阶的计算操作数量 = " + count); int[] nums = new int[n]; for (int i = 0; i < n; i++) nums[i] = n - i; // [n,n-1,...,2,1] count = bubbleSort(nums); System.Console.WriteLine("平方阶(冒泡排序)的计算操作数量 = " + count); count = exponential(n); System.Console.WriteLine("指数阶(循环实现)的计算操作数量 = " + count); count = expRecur(n); System.Console.WriteLine("指数阶(递归实现)的计算操作数量 = " + count); count = logarithmic((float)n); System.Console.WriteLine("对数阶(循环实现)的计算操作数量 = " + count); count = logRecur((float)n); System.Console.WriteLine("对数阶(递归实现)的计算操作数量 = " + count); count = linearLogRecur((float)n); System.Console.WriteLine("线性对数阶(递归实现)的计算操作数量 = " + count); count = factorialRecur(n); System.Console.WriteLine("阶乘阶(递归实现)的计算操作数量 = " + count); } } }