/* * File: array_binary_tree.rs * Created Time: 2023-07-25 * Author: night-cruise (2586447362@qq.com) */ include!("../include/include.rs"); /* Array-based binary tree class */ struct ArrayBinaryTree { tree: Vec>, } impl ArrayBinaryTree { /* Constructor */ fn new(arr: Vec>) -> Self { Self { tree: arr } } /* List capacity */ fn size(&self) -> i32 { self.tree.len() as i32 } /* Get the value of the node at index i */ fn val(&self, i: i32) -> Option { // If the index is out of bounds, return None, representing a vacancy if i < 0 || i >= self.size() { None } else { self.tree[i as usize] } } /* Get the index of the left child of the node at index i */ fn left(&self, i: i32) -> i32 { 2 * i + 1 } /* Get the index of the right child of the node at index i */ fn right(&self, i: i32) -> i32 { 2 * i + 2 } /* Get the index of the parent of the node at index i */ fn parent(&self, i: i32) -> i32 { (i - 1) / 2 } /* Level-order traversal */ fn level_order(&self) -> Vec { let mut res = vec![]; // Traverse array for i in 0..self.size() { if let Some(val) = self.val(i) { res.push(val) } } res } /* Depth-first traversal */ fn dfs(&self, i: i32, order: &str, res: &mut Vec) { if self.val(i).is_none() { return; } let val = self.val(i).unwrap(); // Pre-order traversal if order == "pre" { res.push(val); } self.dfs(self.left(i), order, res); // In-order traversal if order == "in" { res.push(val); } self.dfs(self.right(i), order, res); // Post-order traversal if order == "post" { res.push(val); } } /* Pre-order traversal */ fn pre_order(&self) -> Vec { let mut res = vec![]; self.dfs(0, "pre", &mut res); res } /* In-order traversal */ fn in_order(&self) -> Vec { let mut res = vec![]; self.dfs(0, "in", &mut res); res } /* Post-order traversal */ fn post_order(&self) -> Vec { let mut res = vec![]; self.dfs(0, "post", &mut res); res } } /* Driver Code */ fn main() { // Initialize binary tree // Use a specific function to convert an array into a binary tree let arr = vec![ Some(1), Some(2), Some(3), Some(4), None, Some(6), Some(7), Some(8), Some(9), None, None, Some(12), None, None, Some(15), ]; let root = tree_node::vec_to_tree(arr.clone()).unwrap(); println!("\nInitialize binary tree\n"); println!("Binary tree's array representation:"); println!( "[{}]", arr.iter() .map(|&val| if let Some(val) = val { format!("{val}") } else { "null".to_string() }) .collect::>() .join(", ") ); println!("Binary tree's linked list representation:"); print_util::print_tree(&root); // Array-based binary tree class let abt = ArrayBinaryTree::new(arr); // Access node let i = 1; let l = abt.left(i); let r = abt.right(i); let p = abt.parent(i); println!( "\nCurrent node's index = {}, value = {}", i, if let Some(val) = abt.val(i) { format!("{val}") } else { "null".to_string() } ); println!( "Its left child's index = {}, value = {}", l, if let Some(val) = abt.val(l) { format!("{val}") } else { "null".to_string() } ); println!( "Its right child's index = {}, value = {}", r, if let Some(val) = abt.val(r) { format!("{val}") } else { "null".to_string() } ); println!( "Its parent's index = {}, value = {}", p, if let Some(val) = abt.val(p) { format!("{val}") } else { "null".to_string() } ); // Traverse tree let mut res = abt.level_order(); println!("\nLevel-order traversal is:{:?}", res); res = abt.pre_order(); println!("Pre-order traversal is:{:?}", res); res = abt.in_order(); println!("In-order traversal is:{:?}", res); res = abt.post_order(); println!("Post-order traversal is:{:?}", res); }