/* * File: my_heap.rs * Created Time: 2023-07-16 * Author: night-cruise (2586447362@qq.com) */ include!("../include/include.rs"); /* Max-heap */ struct MaxHeap { // Use vector instead of array to avoid needing to resize max_heap: Vec, } impl MaxHeap { /* Constructor, build heap based on input list */ fn new(nums: Vec) -> Self { // Add all list elements into the heap let mut heap = MaxHeap { max_heap: nums }; // Heapify all nodes except leaves for i in (0..=Self::parent(heap.size() - 1)).rev() { heap.sift_down(i); } heap } /* Get index of left child node */ fn left(i: usize) -> usize { 2 * i + 1 } /* Get index of right child node */ fn right(i: usize) -> usize { 2 * i + 2 } /* Get index of parent node */ fn parent(i: usize) -> usize { (i - 1) / 2 // Integer division down } /* Swap elements */ fn swap(&mut self, i: usize, j: usize) { self.max_heap.swap(i, j); } /* Get heap size */ fn size(&self) -> usize { self.max_heap.len() } /* Determine if heap is empty */ fn is_empty(&self) -> bool { self.max_heap.is_empty() } /* Access heap top element */ fn peek(&self) -> Option { self.max_heap.first().copied() } /* Push the element into heap */ fn push(&mut self, val: i32) { // Add node self.max_heap.push(val); // Heapify from bottom to top self.sift_up(self.size() - 1); } /* Start heapifying node i, from bottom to top */ fn sift_up(&mut self, mut i: usize) { loop { // Node i is already the top node of the heap, end heapification if i == 0 { break; } // Get parent node of node i let p = Self::parent(i); // When "node needs no repair", end heapification if self.max_heap[i] <= self.max_heap[p] { break; } // Swap two nodes self.swap(i, p); // Loop upwards heapification i = p; } } /* Element exits heap */ fn pop(&mut self) -> i32 { // Empty handling if self.is_empty() { panic!("index out of bounds"); } // Swap the root node with the rightmost leaf node (swap the first element with the last element) self.swap(0, self.size() - 1); // Remove node let val = self.max_heap.pop().unwrap(); // Heapify from top to bottom self.sift_down(0); // Return heap top element val } /* Start heapifying node i, from top to bottom */ fn sift_down(&mut self, mut i: usize) { loop { // Determine the largest node among i, l, r, noted as ma let (l, r, mut ma) = (Self::left(i), Self::right(i), i); if l < self.size() && self.max_heap[l] > self.max_heap[ma] { ma = l; } if r < self.size() && self.max_heap[r] > self.max_heap[ma] { ma = r; } // If node i is the largest or indices l, r are out of bounds, no further heapification needed, break if ma == i { break; } // Swap two nodes self.swap(i, ma); // Loop downwards heapification i = ma; } } /* Print heap (binary tree) */ fn print(&self) { print_util::print_heap(self.max_heap.clone()); } } /* Driver Code */ fn main() { /* Initialize max-heap */ let mut max_heap = MaxHeap::new(vec![9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2]); println!("\nEnter list and build heap"); max_heap.print(); /* Access heap top element */ let peek = max_heap.peek(); if let Some(peek) = peek { println!("\nThe top element of the heap is {}", peek); } /* Push the element into heap */ let val = 7; max_heap.push(val); println!("\nElement {} after being added to the heap", val); max_heap.print(); /* Pop the element at the heap top */ let peek = max_heap.pop(); println!("\nTop element {} after being removed from the heap", peek); max_heap.print(); /* Get heap size */ let size = max_heap.size(); println!("\nThe number of elements in the heap is {}", size); /* Determine if heap is empty */ let is_empty = max_heap.is_empty(); println!("\nIs the heap empty {}", is_empty); }