/* * File: build_tree.rs * Created Time: 2023-07-15 * Author: codingonion (coderonion@gmail.com) */ use std::collections::HashMap; use std::{cell::RefCell, rc::Rc}; include!("../include/include.rs"); use tree_node::TreeNode; /* Build binary tree: Divide and conquer */ fn dfs( preorder: &[i32], inorder_map: &HashMap, i: i32, l: i32, r: i32, ) -> Option>> { // Terminate when subtree interval is empty if r - l < 0 { return None; } // Initialize root node let root = TreeNode::new(preorder[i as usize]); // Query m to divide left and right subtrees let m = inorder_map.get(&preorder[i as usize]).unwrap(); // Subproblem: build left subtree root.borrow_mut().left = dfs(preorder, inorder_map, i + 1, l, m - 1); // Subproblem: build right subtree root.borrow_mut().right = dfs(preorder, inorder_map, i + 1 + m - l, m + 1, r); // Return root node Some(root) } /* Build binary tree */ fn build_tree(preorder: &[i32], inorder: &[i32]) -> Option>> { // Initialize hash table, storing in-order elements to indices mapping let mut inorder_map: HashMap = HashMap::new(); for i in 0..inorder.len() { inorder_map.insert(inorder[i], i as i32); } let root = dfs(preorder, &inorder_map, 0, 0, inorder.len() as i32 - 1); root } /* Driver Code */ fn main() { let preorder = [3, 9, 2, 1, 7]; let inorder = [9, 3, 1, 2, 7]; println!("In-order traversal = {:?}", preorder); println!("Pre-order traversal = {:?}", inorder); let root = build_tree(&preorder, &inorder); println!("The built binary tree is:"); print_util::print_tree(root.as_ref().unwrap()); }