/* * File: subset_sum_i_naive.rs * Created Time: 2023-07-09 * Author: codingonion (coderonion@gmail.com) */ /* Backtracking algorithm: Subset Sum I */ fn backtrack( mut state: Vec, target: i32, total: i32, choices: &[i32], res: &mut Vec>, ) { // When the subset sum equals target, record the solution if total == target { res.push(state); return; } // Traverse all choices for i in 0..choices.len() { // Pruning: if the subset sum exceeds target, skip that choice if total + choices[i] > target { continue; } // Attempt: make a choice, update elements and total state.push(choices[i]); // Proceed to the next round of selection backtrack(state.clone(), target, total + choices[i], choices, res); // Retract: undo the choice, restore to the previous state state.pop(); } } /* Solve Subset Sum I (including duplicate subsets) */ fn subset_sum_i_naive(nums: &[i32], target: i32) -> Vec> { let state = Vec::new(); // State (subset) let total = 0; // Subset sum let mut res = Vec::new(); // Result list (subset list) backtrack(state, target, total, nums, &mut res); res } /* Driver Code */ pub fn main() { let nums = [3, 4, 5]; let target = 9; let res = subset_sum_i_naive(&nums, target); println!("Input array nums = {:?}, target = {}", &nums, target); println!("All subsets equal to {} res = {:?}", target, &res); println!("Please note that the result of this method includes duplicate sets"); }