/* * File: subset_sum_i.rs * Created Time: 2023-07-09 * Author: codingonion (coderonion@gmail.com) */ /* Backtracking algorithm: Subset Sum I */ fn backtrack( mut state: Vec, target: i32, choices: &[i32], start: usize, res: &mut Vec>, ) { // When the subset sum equals target, record the solution if target == 0 { res.push(state); return; } // Traverse all choices // Pruning two: start traversing from start to avoid generating duplicate subsets for i in start..choices.len() { // Pruning one: if the subset sum exceeds target, end the loop immediately // This is because the array is sorted, and later elements are larger, so the subset sum will definitely exceed target if target - choices[i] < 0 { break; } // Attempt: make a choice, update target, start state.push(choices[i]); // Proceed to the next round of selection backtrack(state.clone(), target - choices[i], choices, i, res); // Retract: undo the choice, restore to the previous state state.pop(); } } /* Solve Subset Sum I */ fn subset_sum_i(nums: &mut [i32], target: i32) -> Vec> { let state = Vec::new(); // State (subset) nums.sort(); // Sort nums let start = 0; // Start point for traversal let mut res = Vec::new(); // Result list (subset list) backtrack(state, target, nums, start, &mut res); res } /* Driver Code */ pub fn main() { let mut nums = [3, 4, 5]; let target = 9; let res = subset_sum_i(&mut nums, target); println!("Input array nums = {:?}, target = {}", &nums, target); println!("All subsets equal to {} res = {:?}", target, &res); }