/** * File: knapsack.js * Created Time: 2023-08-23 * Author: Gaofer Chou (gaofer-chou@qq.com) */ /* 0-1 Knapsack: Brute force search */ function knapsackDFS(wgt, val, i, c) { // If all items have been chosen or the knapsack has no remaining capacity, return value 0 if (i === 0 || c === 0) { return 0; } // If exceeding the knapsack capacity, can only choose not to put it in the knapsack if (wgt[i - 1] > c) { return knapsackDFS(wgt, val, i - 1, c); } // Calculate the maximum value of not putting in and putting in item i const no = knapsackDFS(wgt, val, i - 1, c); const yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]; // Return the greater value of the two options return Math.max(no, yes); } /* 0-1 Knapsack: Memoized search */ function knapsackDFSMem(wgt, val, mem, i, c) { // If all items have been chosen or the knapsack has no remaining capacity, return value 0 if (i === 0 || c === 0) { return 0; } // If there is a record, return it if (mem[i][c] !== -1) { return mem[i][c]; } // If exceeding the knapsack capacity, can only choose not to put it in the knapsack if (wgt[i - 1] > c) { return knapsackDFSMem(wgt, val, mem, i - 1, c); } // Calculate the maximum value of not putting in and putting in item i const no = knapsackDFSMem(wgt, val, mem, i - 1, c); const yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]; // Record and return the greater value of the two options mem[i][c] = Math.max(no, yes); return mem[i][c]; } /* 0-1 Knapsack: Dynamic programming */ function knapsackDP(wgt, val, cap) { const n = wgt.length; // Initialize dp table const dp = Array(n + 1) .fill(0) .map(() => Array(cap + 1).fill(0)); // State transition for (let i = 1; i <= n; i++) { for (let c = 1; c <= cap; c++) { if (wgt[i - 1] > c) { // If exceeding the knapsack capacity, do not choose item i dp[i][c] = dp[i - 1][c]; } else { // The greater value between not choosing and choosing item i dp[i][c] = Math.max( dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1] ); } } } return dp[n][cap]; } /* 0-1 Knapsack: Space-optimized dynamic programming */ function knapsackDPComp(wgt, val, cap) { const n = wgt.length; // Initialize dp table const dp = Array(cap + 1).fill(0); // State transition for (let i = 1; i <= n; i++) { // Traverse in reverse order for (let c = cap; c >= 1; c--) { if (wgt[i - 1] <= c) { // The greater value between not choosing and choosing item i dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]); } } } return dp[cap]; } /* Driver Code */ const wgt = [10, 20, 30, 40, 50]; const val = [50, 120, 150, 210, 240]; const cap = 50; const n = wgt.length; // Brute force search let res = knapsackDFS(wgt, val, n, cap); console.log(`不超过背包容量的最大物品价值为 ${res}`); // Memoized search const mem = Array.from({ length: n + 1 }, () => Array.from({ length: cap + 1 }, () => -1) ); res = knapsackDFSMem(wgt, val, mem, n, cap); console.log(`不超过背包容量的最大物品价值为 ${res}`); // Dynamic programming res = knapsackDP(wgt, val, cap); console.log(`不超过背包容量的最大物品价值为 ${res}`); // Space-optimized dynamic programming res = knapsackDPComp(wgt, val, cap); console.log(`不超过背包容量的最大物品价值为 ${res}`);