/** * File: avl_tree.c * Created Time: 2023-01-15 * Author: Reanon (793584285@qq.com) */ #include "../utils/common.h" /* AVL tree structure */ typedef struct { TreeNode *root; } AVLTree; /* Constructor */ AVLTree *newAVLTree() { AVLTree *tree = (AVLTree *)malloc(sizeof(AVLTree)); tree->root = NULL; return tree; } /* Destructor */ void delAVLTree(AVLTree *tree) { freeMemoryTree(tree->root); free(tree); } /* Get node height */ int height(TreeNode *node) { // Empty node height is -1, leaf node height is 0 if (node != NULL) { return node->height; } return -1; } /* Update node height */ void updateHeight(TreeNode *node) { int lh = height(node->left); int rh = height(node->right); // Node height equals the height of the tallest subtree + 1 if (lh > rh) { node->height = lh + 1; } else { node->height = rh + 1; } } /* Get balance factor */ int balanceFactor(TreeNode *node) { // Empty node balance factor is 0 if (node == NULL) { return 0; } // Node balance factor = left subtree height - right subtree height return height(node->left) - height(node->right); } /* Right rotation operation */ TreeNode *rightRotate(TreeNode *node) { TreeNode *child, *grandChild; child = node->left; grandChild = child->right; // Rotate node to the right around child child->right = node; node->left = grandChild; // Update node height updateHeight(node); updateHeight(child); // Return the root of the subtree after rotation return child; } /* Left rotation operation */ TreeNode *leftRotate(TreeNode *node) { TreeNode *child, *grandChild; child = node->right; grandChild = child->left; // Rotate node to the left around child child->left = node; node->right = grandChild; // Update node height updateHeight(node); updateHeight(child); // Return the root of the subtree after rotation return child; } /* Perform rotation operation to restore balance to the subtree */ TreeNode *rotate(TreeNode *node) { // Get the balance factor of node int bf = balanceFactor(node); // Left-leaning tree if (bf > 1) { if (balanceFactor(node->left) >= 0) { // Right rotation return rightRotate(node); } else { // First left rotation then right rotation node->left = leftRotate(node->left); return rightRotate(node); } } // Right-leaning tree if (bf < -1) { if (balanceFactor(node->right) <= 0) { // Left rotation return leftRotate(node); } else { // First right rotation then left rotation node->right = rightRotate(node->right); return leftRotate(node); } } // Balanced tree, no rotation needed, return return node; } /* Recursive insertion of nodes (helper function) */ TreeNode *insertHelper(TreeNode *node, int val) { if (node == NULL) { return newTreeNode(val); } /* 1. Find insertion position and insert node */ if (val < node->val) { node->left = insertHelper(node->left, val); } else if (val > node->val) { node->right = insertHelper(node->right, val); } else { // Do not insert duplicate nodes, return return node; } // Update node height updateHeight(node); /* 2. Perform rotation operation to restore balance to the subtree */ node = rotate(node); // Return the root node of the subtree return node; } /* Insert node */ void insert(AVLTree *tree, int val) { tree->root = insertHelper(tree->root, val); } /* Recursive removal of nodes (helper function) */ TreeNode *removeHelper(TreeNode *node, int val) { TreeNode *child, *grandChild; if (node == NULL) { return NULL; } /* 1. Find and remove the node */ if (val < node->val) { node->left = removeHelper(node->left, val); } else if (val > node->val) { node->right = removeHelper(node->right, val); } else { if (node->left == NULL || node->right == NULL) { child = node->left; if (node->right != NULL) { child = node->right; } // Number of child nodes = 0, remove node and return if (child == NULL) { return NULL; } else { // Number of child nodes = 1, remove node node = child; } } else { // Number of child nodes = 2, remove the next node in in-order traversal and replace the current node with it TreeNode *temp = node->right; while (temp->left != NULL) { temp = temp->left; } int tempVal = temp->val; node->right = removeHelper(node->right, temp->val); node->val = tempVal; } } // Update node height updateHeight(node); /* 2. Perform rotation operation to restore balance to the subtree */ node = rotate(node); // Return the root node of the subtree return node; } /* Remove node */ // Due to the inclusion of stdio.h, cannot use the keyword 'remove' here void removeItem(AVLTree *tree, int val) { TreeNode *root = removeHelper(tree->root, val); } /* Search node */ TreeNode *search(AVLTree *tree, int val) { TreeNode *cur = tree->root; // Loop find, break after passing leaf nodes while (cur != NULL) { if (cur->val < val) { // Target node is in cur's right subtree cur = cur->right; } else if (cur->val > val) { // Target node is in cur's left subtree cur = cur->left; } else { // Found target node, break loop break; } } // Found target node, break loop return cur; } void testInsert(AVLTree *tree, int val) { insert(tree, val); printf("\nAfter inserting node %d, the AVL tree is \n", val); printTree(tree->root); } void testRemove(AVLTree *tree, int val) { removeItem(tree, val); printf("\nAfter removing node %d, the AVL tree is \n", val); printTree(tree->root); } /* Driver Code */ int main() { /* Initialize empty AVL tree */ AVLTree *tree = (AVLTree *)newAVLTree(); /* Insert node */ // Notice how the AVL tree maintains balance after inserting nodes testInsert(tree, 1); testInsert(tree, 2); testInsert(tree, 3); testInsert(tree, 4); testInsert(tree, 5); testInsert(tree, 8); testInsert(tree, 7); testInsert(tree, 9); testInsert(tree, 10); testInsert(tree, 6); /* Insert duplicate node */ testInsert(tree, 7); /* Remove node */ // Notice how the AVL tree maintains balance after removing nodes testRemove(tree, 8); // Remove node with degree 0 testRemove(tree, 5); // Remove node with degree 1 testRemove(tree, 4); // Remove node with degree 2 /* Search node */ TreeNode *node = search(tree, 7); printf("\nFound node object node value = %d \n", node->val); // Free memory delAVLTree(tree); return 0; }