/** * File: my_heap.c * Created Time: 2023-01-15 * Author: Reanon (793584285@qq.com) */ #include "../utils/common.h" #define MAX_SIZE 5000 /* Max-heap */ typedef struct { // size represents the actual number of elements int size; // Use pre-allocated memory array to avoid resizing int data[MAX_SIZE]; } MaxHeap; // Function declaration void siftDown(MaxHeap *maxHeap, int i); void siftUp(MaxHeap *maxHeap, int i); int parent(MaxHeap *maxHeap, int i); /* Constructor, build a heap based on slice */ MaxHeap *newMaxHeap(int nums[], int size) { // All elements entered into heap MaxHeap *maxHeap = (MaxHeap *)malloc(sizeof(MaxHeap)); maxHeap->size = size; memcpy(maxHeap->data, nums, size * sizeof(int)); for (int i = parent(maxHeap, size - 1); i >= 0; i--) { // Heapify all nodes except leaves siftDown(maxHeap, i); } return maxHeap; } /* Destructor */ void delMaxHeap(MaxHeap *maxHeap) { // Free memory free(maxHeap); } /* Get index of left child node */ int left(MaxHeap *maxHeap, int i) { return 2 * i + 1; } /* Get index of right child node */ int right(MaxHeap *maxHeap, int i) { return 2 * i + 2; } /* Get index of parent node */ int parent(MaxHeap *maxHeap, int i) { return (i - 1) / 2; // Round down } /* Swap elements */ void swap(MaxHeap *maxHeap, int i, int j) { int temp = maxHeap->data[i]; maxHeap->data[i] = maxHeap->data[j]; maxHeap->data[j] = temp; } /* Get heap size */ int size(MaxHeap *maxHeap) { return maxHeap->size; } /* Determine if heap is empty */ int isEmpty(MaxHeap *maxHeap) { return maxHeap->size == 0; } /* Access heap top element */ int peek(MaxHeap *maxHeap) { return maxHeap->data[0]; } /* Push the element into heap */ void push(MaxHeap *maxHeap, int val) { // Normally, should not add so many nodes if (maxHeap->size == MAX_SIZE) { printf("heap is full!"); return; } // Add node maxHeap->data[maxHeap->size] = val; maxHeap->size++; // Heapify from bottom to top siftUp(maxHeap, maxHeap->size - 1); } /* Element exits heap */ int pop(MaxHeap *maxHeap) { // Empty handling if (isEmpty(maxHeap)) { printf("heap is empty!"); return INT_MAX; } // Swap the root node with the rightmost leaf node (swap the first element with the last element) swap(maxHeap, 0, size(maxHeap) - 1); // Remove node int val = maxHeap->data[maxHeap->size - 1]; maxHeap->size--; // Heapify from top to bottom siftDown(maxHeap, 0); // Return heap top element return val; } /* Start heapifying node i, from top to bottom */ void siftDown(MaxHeap *maxHeap, int i) { while (true) { // Determine the node with the maximum value among nodes i, l, r, denoted as max int l = left(maxHeap, i); int r = right(maxHeap, i); int max = i; if (l < size(maxHeap) && maxHeap->data[l] > maxHeap->data[max]) { max = l; } if (r < size(maxHeap) && maxHeap->data[r] > maxHeap->data[max]) { max = r; } // If node i is the largest or indices l, r are out of bounds, no further heapification needed, break if (max == i) { break; } // Swap two nodes swap(maxHeap, i, max); // Loop downwards heapification i = max; } } /* Start heapifying node i, from bottom to top */ void siftUp(MaxHeap *maxHeap, int i) { while (true) { // Get parent node of node i int p = parent(maxHeap, i); // When "crossing the root node" or "node does not need repair", end heapification if (p < 0 || maxHeap->data[i] <= maxHeap->data[p]) { break; } // Swap two nodes swap(maxHeap, i, p); // Loop upwards heapification i = p; } }