/** * File: time_complexity.c * Created Time: 2023-01-03 * Author: codingonion (coderonion@gmail.com) */ #include "../utils/common.h" /* Constant complexity */ int constant(int n) { int count = 0; int size = 100000; int i = 0; for (int i = 0; i < size; i++) { count++; } return count; } /* Linear complexity */ int linear(int n) { int count = 0; for (int i = 0; i < n; i++) { count++; } return count; } /* Linear complexity (traversing an array) */ int arrayTraversal(int *nums, int n) { int count = 0; // Loop count is proportional to the length of the array for (int i = 0; i < n; i++) { count++; } return count; } /* Quadratic complexity */ int quadratic(int n) { int count = 0; // Loop count is squared in relation to the data size n for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { count++; } } return count; } /* Quadratic complexity (bubble sort) */ int bubbleSort(int *nums, int n) { int count = 0; // Counter // Outer loop: unsorted range is [0, i] for (int i = n - 1; i > 0; i--) { // Inner loop: swap the largest element in the unsorted range [0, i] to the right end of the range for (int j = 0; j < i; j++) { if (nums[j] > nums[j + 1]) { // Swap nums[j] and nums[j + 1] int tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; count += 3; // Element swap includes 3 individual operations } } } return count; } /* Exponential complexity (loop implementation) */ int exponential(int n) { int count = 0; int bas = 1; // Cells split into two every round, forming the sequence 1, 2, 4, 8, ..., 2^(n-1) for (int i = 0; i < n; i++) { for (int j = 0; j < bas; j++) { count++; } bas *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } /* Exponential complexity (recursive implementation) */ int expRecur(int n) { if (n == 1) return 1; return expRecur(n - 1) + expRecur(n - 1) + 1; } /* Logarithmic complexity (loop implementation) */ int logarithmic(int n) { int count = 0; while (n > 1) { n = n / 2; count++; } return count; } /* Logarithmic complexity (recursive implementation) */ int logRecur(int n) { if (n <= 1) return 0; return logRecur(n / 2) + 1; } /* Linear logarithmic complexity */ int linearLogRecur(int n) { if (n <= 1) return 1; int count = linearLogRecur(n / 2) + linearLogRecur(n / 2); for (int i = 0; i < n; i++) { count++; } return count; } /* Factorial complexity (recursive implementation) */ int factorialRecur(int n) { if (n == 0) return 1; int count = 0; for (int i = 0; i < n; i++) { count += factorialRecur(n - 1); } return count; } /* Driver Code */ int main(int argc, char *argv[]) { // Can modify n to experience the trend of operation count changes under various complexities int n = 8; printf("Input data size n = %d\n", n); int count = constant(n); printf("Constant complexity operation count = %d\n", count); count = linear(n); printf("Linear complexity operation count = %d\n", count); // Allocate heap memory (create a one-dimensional dynamic array: array element count = n, element type = int) int *nums = (int *)malloc(n * sizeof(int)); count = arrayTraversal(nums, n); printf("Linear complexity (array traversal) operation count = %d\n", count); count = quadratic(n); printf("Quadratic complexity operation count = %d\n", count); for (int i = 0; i < n; i++) { nums[i] = n - i; // [n,n-1,...,2,1] } count = bubbleSort(nums, n); printf("Quadratic complexity (bubble sort) operation count = %d\n", count); count = exponential(n); printf("Exponential complexity (loop implementation) operation count = %d\n", count); count = expRecur(n); printf("Exponential complexity (recursive implementation) operation count = %d\n", count); count = logarithmic(n); printf("Logarithmic complexity (loop implementation) operation count = %d\n", count); count = logRecur(n); printf("Logarithmic complexity (recursive implementation) operation count = %d\n", count); count = linearLogRecur(n); printf("Linear logarithmic time (recursive implementation) operation count = %d\n", count); count = factorialRecur(n); printf("Factorial complexity (recursive implementation) operation count = %d\n", count); // Free heap memory if (nums != NULL) { free(nums); nums = NULL; } getchar(); return 0; }