/** * File: min_path_sum.swift * Created Time: 2023-07-15 * Author: nuomi1 (nuomi1@qq.com) */ /* Minimum path sum: Brute force search */ func minPathSumDFS(grid: [[Int]], i: Int, j: Int) -> Int { // If it's the top-left cell, terminate the search if i == 0, j == 0 { return grid[0][0] } // If the row or column index is out of bounds, return a +∞ cost if i < 0 || j < 0 { return .max } // Calculate the minimum path cost from the top-left to (i-1, j) and (i, j-1) let up = minPathSumDFS(grid: grid, i: i - 1, j: j) let left = minPathSumDFS(grid: grid, i: i, j: j - 1) // Return the minimum path cost from the top-left to (i, j) return min(left, up) + grid[i][j] } /* Minimum path sum: Memoized search */ func minPathSumDFSMem(grid: [[Int]], mem: inout [[Int]], i: Int, j: Int) -> Int { // If it's the top-left cell, terminate the search if i == 0, j == 0 { return grid[0][0] } // If the row or column index is out of bounds, return a +∞ cost if i < 0 || j < 0 { return .max } // If there is a record, return it if mem[i][j] != -1 { return mem[i][j] } // The minimum path cost from the left and top cells let up = minPathSumDFSMem(grid: grid, mem: &mem, i: i - 1, j: j) let left = minPathSumDFSMem(grid: grid, mem: &mem, i: i, j: j - 1) // Record and return the minimum path cost from the top-left to (i, j) mem[i][j] = min(left, up) + grid[i][j] return mem[i][j] } /* Minimum path sum: Dynamic programming */ func minPathSumDP(grid: [[Int]]) -> Int { let n = grid.count let m = grid[0].count // Initialize dp table var dp = Array(repeating: Array(repeating: 0, count: m), count: n) dp[0][0] = grid[0][0] // State transition: first row for j in 1 ..< m { dp[0][j] = dp[0][j - 1] + grid[0][j] } // State transition: first column for i in 1 ..< n { dp[i][0] = dp[i - 1][0] + grid[i][0] } // State transition: the rest of the rows and columns for i in 1 ..< n { for j in 1 ..< m { dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j] } } return dp[n - 1][m - 1] } /* Minimum path sum: Space-optimized dynamic programming */ func minPathSumDPComp(grid: [[Int]]) -> Int { let n = grid.count let m = grid[0].count // Initialize dp table var dp = Array(repeating: 0, count: m) // State transition: first row dp[0] = grid[0][0] for j in 1 ..< m { dp[j] = dp[j - 1] + grid[0][j] } // State transition: the rest of the rows for i in 1 ..< n { // State transition: first column dp[0] = dp[0] + grid[i][0] // State transition: the rest of the columns for j in 1 ..< m { dp[j] = min(dp[j - 1], dp[j]) + grid[i][j] } } return dp[m - 1] } @main enum MinPathSum { /* Driver Code */ static func main() { let grid = [ [1, 3, 1, 5], [2, 2, 4, 2], [5, 3, 2, 1], [4, 3, 5, 2], ] let n = grid.count let m = grid[0].count // Brute force search var res = minPathSumDFS(grid: grid, i: n - 1, j: m - 1) print("Minimum path sum from the top-left corner to the bottom-right corner = \(res)") // Memoized search var mem = Array(repeating: Array(repeating: -1, count: m), count: n) res = minPathSumDFSMem(grid: grid, mem: &mem, i: n - 1, j: m - 1) print("Minimum path sum from the top-left corner to the bottom-right corner = \(res)") // Dynamic programming res = minPathSumDP(grid: grid) print("Minimum path sum from the top-left corner to the bottom-right corner = \(res)") // Space-optimized dynamic programming res = minPathSumDPComp(grid: grid) print("Minimum path sum from the top-left corner to the bottom-right corner = \(res)") } }