// File: knapsack.go // Created Time: 2023-07-23 // Author: Reanon (793584285@qq.com) package chapter_dynamic_programming import "math" /* 0-1 Knapsack: Brute force search */ func knapsackDFS(wgt, val []int, i, c int) int { // If all items have been chosen or the knapsack has no remaining capacity, return value 0 if i == 0 || c == 0 { return 0 } // If exceeding the knapsack capacity, can only choose not to put it in the knapsack if wgt[i-1] > c { return knapsackDFS(wgt, val, i-1, c) } // Calculate the maximum value of not putting in and putting in item i no := knapsackDFS(wgt, val, i-1, c) yes := knapsackDFS(wgt, val, i-1, c-wgt[i-1]) + val[i-1] // Return the greater value of the two options return int(math.Max(float64(no), float64(yes))) } /* 0-1 Knapsack: Memoized search */ func knapsackDFSMem(wgt, val []int, mem [][]int, i, c int) int { // If all items have been chosen or the knapsack has no remaining capacity, return value 0 if i == 0 || c == 0 { return 0 } // If there is a record, return it if mem[i][c] != -1 { return mem[i][c] } // If exceeding the knapsack capacity, can only choose not to put it in the knapsack if wgt[i-1] > c { return knapsackDFSMem(wgt, val, mem, i-1, c) } // Calculate the maximum value of not putting in and putting in item i no := knapsackDFSMem(wgt, val, mem, i-1, c) yes := knapsackDFSMem(wgt, val, mem, i-1, c-wgt[i-1]) + val[i-1] // Return the greater value of the two options mem[i][c] = int(math.Max(float64(no), float64(yes))) return mem[i][c] } /* 0-1 Knapsack: Dynamic programming */ func knapsackDP(wgt, val []int, cap int) int { n := len(wgt) // Initialize dp table dp := make([][]int, n+1) for i := 0; i <= n; i++ { dp[i] = make([]int, cap+1) } // State transition for i := 1; i <= n; i++ { for c := 1; c <= cap; c++ { if wgt[i-1] > c { // If exceeding the knapsack capacity, do not choose item i dp[i][c] = dp[i-1][c] } else { // The greater value between not choosing and choosing item i dp[i][c] = int(math.Max(float64(dp[i-1][c]), float64(dp[i-1][c-wgt[i-1]]+val[i-1]))) } } } return dp[n][cap] } /* 0-1 Knapsack: Space-optimized dynamic programming */ func knapsackDPComp(wgt, val []int, cap int) int { n := len(wgt) // Initialize dp table dp := make([]int, cap+1) // State transition for i := 1; i <= n; i++ { // Traverse in reverse order for c := cap; c >= 1; c-- { if wgt[i-1] <= c { // The greater value between not choosing and choosing item i dp[c] = int(math.Max(float64(dp[c]), float64(dp[c-wgt[i-1]]+val[i-1]))) } } } return dp[cap] }