// File: time_complexity.go // Created Time: 2022-12-13 // Author: msk397 (machangxinq@gmail.com) package chapter_computational_complexity /* Constant complexity */ func constant(n int) int { count := 0 size := 100000 for i := 0; i < size; i++ { count++ } return count } /* Linear complexity */ func linear(n int) int { count := 0 for i := 0; i < n; i++ { count++ } return count } /* Linear complexity (traversing an array) */ func arrayTraversal(nums []int) int { count := 0 // Loop count is proportional to the length of the array for range nums { count++ } return count } /* Quadratic complexity */ func quadratic(n int) int { count := 0 // Loop count is squared in relation to the data size n for i := 0; i < n; i++ { for j := 0; j < n; j++ { count++ } } return count } /* Quadratic complexity (bubble sort) */ func bubbleSort(nums []int) int { count := 0 // Counter // Outer loop: unsorted range is [0, i] for i := len(nums) - 1; i > 0; i-- { // Inner loop: swap the largest element in the unsorted range [0, i] to the right end of the range for j := 0; j < i; j++ { if nums[j] > nums[j+1] { // Swap nums[j] and nums[j + 1] tmp := nums[j] nums[j] = nums[j+1] nums[j+1] = tmp count += 3 // Element swap includes 3 individual operations } } } return count } /* Exponential complexity (loop implementation)*/ func exponential(n int) int { count, base := 0, 1 // Cells split into two every round, forming the sequence 1, 2, 4, 8, ..., 2^(n-1) for i := 0; i < n; i++ { for j := 0; j < base; j++ { count++ } base *= 2 } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count } /* Exponential complexity (recursive implementation)*/ func expRecur(n int) int { if n == 1 { return 1 } return expRecur(n-1) + expRecur(n-1) + 1 } /* Logarithmic complexity (loop implementation)*/ func logarithmic(n int) int { count := 0 for n > 1 { n = n / 2 count++ } return count } /* Logarithmic complexity (recursive implementation)*/ func logRecur(n int) int { if n <= 1 { return 0 } return logRecur(n/2) + 1 } /* Linear logarithmic complexity */ func linearLogRecur(n int) int { if n <= 1 { return 1 } count := linearLogRecur(n/2) + linearLogRecur(n/2) for i := 0; i < n; i++ { count++ } return count } /* Factorial complexity (recursive implementation) */ func factorialRecur(n int) int { if n == 0 { return 1 } count := 0 // From 1 split into n for i := 0; i < n; i++ { count += factorialRecur(n - 1) } return count }