/** * File: n_queens.dart * Created Time: 2023-08-10 * Author: liuyuxin (gvenusleo@gmail.com) */ /* Backtracking algorithm: n queens */ void backtrack( int row, int n, List> state, List>> res, List cols, List diags1, List diags2, ) { // When all rows are placed, record the solution if (row == n) { List> copyState = []; for (List sRow in state) { copyState.add(List.from(sRow)); } res.add(copyState); return; } // Traverse all columns for (int col = 0; col < n; col++) { // Calculate the main and minor diagonals corresponding to the cell int diag1 = row - col + n - 1; int diag2 = row + col; // Pruning: do not allow queens on the column, main diagonal, or minor diagonal of the cell if (!cols[col] && !diags1[diag1] && !diags2[diag2]) { // Attempt: place the queen in the cell state[row][col] = "Q"; cols[col] = true; diags1[diag1] = true; diags2[diag2] = true; // Place the next row backtrack(row + 1, n, state, res, cols, diags1, diags2); // Retract: restore the cell to an empty spot state[row][col] = "#"; cols[col] = false; diags1[diag1] = false; diags2[diag2] = false; } } } /* Solve n queens */ List>> nQueens(int n) { // Initialize an n*n size chessboard, where 'Q' represents the queen and '#' represents an empty spot List> state = List.generate(n, (index) => List.filled(n, "#")); List cols = List.filled(n, false); // Record columns with queens List diags1 = List.filled(2 * n - 1, false); // Record main diagonals with queens List diags2 = List.filled(2 * n - 1, false); // Record minor diagonals with queens List>> res = []; backtrack(0, n, state, res, cols, diags1, diags2); return res; } /* Driver Code */ void main() { int n = 4; List>> res = nQueens(n); print("Input chessboard dimensions as $n"); print("There are ${res.length} queen placement solutions"); for (List> state in res) { print("--------------------"); for (List row in state) { print(row); } } }