--- comments: true --- # 10.4   Hash optimization strategies In algorithm problems, **we often reduce the time complexity of algorithms by replacing linear search with hash search**. Let's use an algorithm problem to deepen understanding. !!! question Given an integer array `nums` and a target element `target`, please search for two elements in the array whose "sum" equals `target`, and return their array indices. Any solution is acceptable. ## 10.4.1   Linear search: trading time for space Consider traversing all possible combinations directly. As shown in the Figure 10-9 , we initiate a two-layer loop, and in each round, we determine whether the sum of the two integers equals `target`. If so, we return their indices. ![Linear search solution for two-sum problem](replace_linear_by_hashing.assets/two_sum_brute_force.png){ class="animation-figure" }

Figure 10-9   Linear search solution for two-sum problem

The code is shown below: === "Python" ```python title="two_sum.py" def two_sum_brute_force(nums: list[int], target: int) -> list[int]: """方法一:暴力枚举""" # 两层循环,时间复杂度为 O(n^2) for i in range(len(nums) - 1): for j in range(i + 1, len(nums)): if nums[i] + nums[j] == target: return [i, j] return [] ``` === "C++" ```cpp title="two_sum.cpp" /* 方法一:暴力枚举 */ vector twoSumBruteForce(vector &nums, int target) { int size = nums.size(); // 两层循环,时间复杂度为 O(n^2) for (int i = 0; i < size - 1; i++) { for (int j = i + 1; j < size; j++) { if (nums[i] + nums[j] == target) return {i, j}; } } return {}; } ``` === "Java" ```java title="two_sum.java" /* 方法一:暴力枚举 */ int[] twoSumBruteForce(int[] nums, int target) { int size = nums.length; // 两层循环,时间复杂度为 O(n^2) for (int i = 0; i < size - 1; i++) { for (int j = i + 1; j < size; j++) { if (nums[i] + nums[j] == target) return new int[] { i, j }; } } return new int[0]; } ``` === "C#" ```csharp title="two_sum.cs" /* 方法一:暴力枚举 */ int[] TwoSumBruteForce(int[] nums, int target) { int size = nums.Length; // 两层循环,时间复杂度为 O(n^2) for (int i = 0; i < size - 1; i++) { for (int j = i + 1; j < size; j++) { if (nums[i] + nums[j] == target) return [i, j]; } } return []; } ``` === "Go" ```go title="two_sum.go" /* 方法一:暴力枚举 */ func twoSumBruteForce(nums []int, target int) []int { size := len(nums) // 两层循环,时间复杂度为 O(n^2) for i := 0; i < size-1; i++ { for j := i + 1; j < size; j++ { if nums[i]+nums[j] == target { return []int{i, j} } } } return nil } ``` === "Swift" ```swift title="two_sum.swift" /* 方法一:暴力枚举 */ func twoSumBruteForce(nums: [Int], target: Int) -> [Int] { // 两层循环,时间复杂度为 O(n^2) for i in nums.indices.dropLast() { for j in nums.indices.dropFirst(i + 1) { if nums[i] + nums[j] == target { return [i, j] } } } return [0] } ``` === "JS" ```javascript title="two_sum.js" /* 方法一:暴力枚举 */ function twoSumBruteForce(nums, target) { const n = nums.length; // 两层循环,时间复杂度为 O(n^2) for (let i = 0; i < n; i++) { for (let j = i + 1; j < n; j++) { if (nums[i] + nums[j] === target) { return [i, j]; } } } return []; } ``` === "TS" ```typescript title="two_sum.ts" /* 方法一:暴力枚举 */ function twoSumBruteForce(nums: number[], target: number): number[] { const n = nums.length; // 两层循环,时间复杂度为 O(n^2) for (let i = 0; i < n; i++) { for (let j = i + 1; j < n; j++) { if (nums[i] + nums[j] === target) { return [i, j]; } } } return []; } ``` === "Dart" ```dart title="two_sum.dart" /* 方法一: 暴力枚举 */ List twoSumBruteForce(List nums, int target) { int size = nums.length; // 两层循环,时间复杂度为 O(n^2) for (var i = 0; i < size - 1; i++) { for (var j = i + 1; j < size; j++) { if (nums[i] + nums[j] == target) return [i, j]; } } return [0]; } ``` === "Rust" ```rust title="two_sum.rs" /* 方法一:暴力枚举 */ pub fn two_sum_brute_force(nums: &Vec, target: i32) -> Option> { let size = nums.len(); // 两层循环,时间复杂度为 O(n^2) for i in 0..size - 1 { for j in i + 1..size { if nums[i] + nums[j] == target { return Some(vec![i as i32, j as i32]); } } } None } ``` === "C" ```c title="two_sum.c" /* 方法一:暴力枚举 */ int *twoSumBruteForce(int *nums, int numsSize, int target, int *returnSize) { for (int i = 0; i < numsSize; ++i) { for (int j = i + 1; j < numsSize; ++j) { if (nums[i] + nums[j] == target) { int *res = malloc(sizeof(int) * 2); res[0] = i, res[1] = j; *returnSize = 2; return res; } } } *returnSize = 0; return NULL; } ``` === "Kotlin" ```kotlin title="two_sum.kt" /* 方法一:暴力枚举 */ fun twoSumBruteForce(nums: IntArray, target: Int): IntArray { val size = nums.size // 两层循环,时间复杂度为 O(n^2) for (i in 0.. This method has a time complexity of $O(n^2)$ and a space complexity of $O(1)$, which is very time-consuming with large data volumes. ## 10.4.2   Hash search: trading space for time Consider using a hash table, with key-value pairs being the array elements and their indices, respectively. Loop through the array, performing the steps shown in the figures below each round. 1. Check if the number `target - nums[i]` is in the hash table. If so, directly return the indices of these two elements. 2. Add the key-value pair `nums[i]` and index `i` to the hash table. === "<1>" ![Help hash table solve two-sum](replace_linear_by_hashing.assets/two_sum_hashtable_step1.png){ class="animation-figure" } === "<2>" ![two_sum_hashtable_step2](replace_linear_by_hashing.assets/two_sum_hashtable_step2.png){ class="animation-figure" } === "<3>" ![two_sum_hashtable_step3](replace_linear_by_hashing.assets/two_sum_hashtable_step3.png){ class="animation-figure" }

Figure 10-10   Help hash table solve two-sum

The implementation code is shown below, requiring only a single loop: === "Python" ```python title="two_sum.py" def two_sum_hash_table(nums: list[int], target: int) -> list[int]: """方法二:辅助哈希表""" # 辅助哈希表,空间复杂度为 O(n) dic = {} # 单层循环,时间复杂度为 O(n) for i in range(len(nums)): if target - nums[i] in dic: return [dic[target - nums[i]], i] dic[nums[i]] = i return [] ``` === "C++" ```cpp title="two_sum.cpp" /* 方法二:辅助哈希表 */ vector twoSumHashTable(vector &nums, int target) { int size = nums.size(); // 辅助哈希表,空间复杂度为 O(n) unordered_map dic; // 单层循环,时间复杂度为 O(n) for (int i = 0; i < size; i++) { if (dic.find(target - nums[i]) != dic.end()) { return {dic[target - nums[i]], i}; } dic.emplace(nums[i], i); } return {}; } ``` === "Java" ```java title="two_sum.java" /* 方法二:辅助哈希表 */ int[] twoSumHashTable(int[] nums, int target) { int size = nums.length; // 辅助哈希表,空间复杂度为 O(n) Map dic = new HashMap<>(); // 单层循环,时间复杂度为 O(n) for (int i = 0; i < size; i++) { if (dic.containsKey(target - nums[i])) { return new int[] { dic.get(target - nums[i]), i }; } dic.put(nums[i], i); } return new int[0]; } ``` === "C#" ```csharp title="two_sum.cs" /* 方法二:辅助哈希表 */ int[] TwoSumHashTable(int[] nums, int target) { int size = nums.Length; // 辅助哈希表,空间复杂度为 O(n) Dictionary dic = []; // 单层循环,时间复杂度为 O(n) for (int i = 0; i < size; i++) { if (dic.ContainsKey(target - nums[i])) { return [dic[target - nums[i]], i]; } dic.Add(nums[i], i); } return []; } ``` === "Go" ```go title="two_sum.go" /* 方法二:辅助哈希表 */ func twoSumHashTable(nums []int, target int) []int { // 辅助哈希表,空间复杂度为 O(n) hashTable := map[int]int{} // 单层循环,时间复杂度为 O(n) for idx, val := range nums { if preIdx, ok := hashTable[target-val]; ok { return []int{preIdx, idx} } hashTable[val] = idx } return nil } ``` === "Swift" ```swift title="two_sum.swift" /* 方法二:辅助哈希表 */ func twoSumHashTable(nums: [Int], target: Int) -> [Int] { // 辅助哈希表,空间复杂度为 O(n) var dic: [Int: Int] = [:] // 单层循环,时间复杂度为 O(n) for i in nums.indices { if let j = dic[target - nums[i]] { return [j, i] } dic[nums[i]] = i } return [0] } ``` === "JS" ```javascript title="two_sum.js" /* 方法二:辅助哈希表 */ function twoSumHashTable(nums, target) { // 辅助哈希表,空间复杂度为 O(n) let m = {}; // 单层循环,时间复杂度为 O(n) for (let i = 0; i < nums.length; i++) { if (m[target - nums[i]] !== undefined) { return [m[target - nums[i]], i]; } else { m[nums[i]] = i; } } return []; } ``` === "TS" ```typescript title="two_sum.ts" /* 方法二:辅助哈希表 */ function twoSumHashTable(nums: number[], target: number): number[] { // 辅助哈希表,空间复杂度为 O(n) let m: Map = new Map(); // 单层循环,时间复杂度为 O(n) for (let i = 0; i < nums.length; i++) { let index = m.get(target - nums[i]); if (index !== undefined) { return [index, i]; } else { m.set(nums[i], i); } } return []; } ``` === "Dart" ```dart title="two_sum.dart" /* 方法二: 辅助哈希表 */ List twoSumHashTable(List nums, int target) { int size = nums.length; // 辅助哈希表,空间复杂度为 O(n) Map dic = HashMap(); // 单层循环,时间复杂度为 O(n) for (var i = 0; i < size; i++) { if (dic.containsKey(target - nums[i])) { return [dic[target - nums[i]]!, i]; } dic.putIfAbsent(nums[i], () => i); } return [0]; } ``` === "Rust" ```rust title="two_sum.rs" /* 方法二:辅助哈希表 */ pub fn two_sum_hash_table(nums: &Vec, target: i32) -> Option> { // 辅助哈希表,空间复杂度为 O(n) let mut dic = HashMap::new(); // 单层循环,时间复杂度为 O(n) for (i, num) in nums.iter().enumerate() { match dic.get(&(target - num)) { Some(v) => return Some(vec![*v as i32, i as i32]), None => dic.insert(num, i as i32), }; } None } ``` === "C" ```c title="two_sum.c" /* 哈希表 */ typedef struct { int key; int val; UT_hash_handle hh; // 基于 uthash.h 实现 } HashTable; /* 哈希表查询 */ HashTable *find(HashTable *h, int key) { HashTable *tmp; HASH_FIND_INT(h, &key, tmp); return tmp; } /* 哈希表元素插入 */ void insert(HashTable *h, int key, int val) { HashTable *t = find(h, key); if (t == NULL) { HashTable *tmp = malloc(sizeof(HashTable)); tmp->key = key, tmp->val = val; HASH_ADD_INT(h, key, tmp); } else { t->val = val; } } /* 方法二:辅助哈希表 */ int *twoSumHashTable(int *nums, int numsSize, int target, int *returnSize) { HashTable *hashtable = NULL; for (int i = 0; i < numsSize; i++) { HashTable *t = find(hashtable, target - nums[i]); if (t != NULL) { int *res = malloc(sizeof(int) * 2); res[0] = t->val, res[1] = i; *returnSize = 2; return res; } insert(hashtable, nums[i], i); } *returnSize = 0; return NULL; } ``` === "Kotlin" ```kotlin title="two_sum.kt" /* 方法二:辅助哈希表 */ fun twoSumHashTable(nums: IntArray, target: Int): IntArray { val size = nums.size // 辅助哈希表,空间复杂度为 O(n) val dic = HashMap() // 单层循环,时间复杂度为 O(n) for (i in 0.. This method reduces the time complexity from $O(n^2)$ to $O(n)$ by using hash search, greatly improving the running efficiency. As it requires maintaining an additional hash table, the space complexity is $O(n)$. **Nevertheless, this method has a more balanced time-space efficiency overall, making it the optimal solution for this problem**.