/** * File: knapsack.swift * Created Time: 2023-07-15 * Author: nuomi1 (nuomi1@qq.com) */ /* 0-1 Knapsack: Brute force search */ func knapsackDFS(wgt: [Int], val: [Int], i: Int, c: Int) -> Int { // If all items have been chosen or the knapsack has no remaining capacity, return value 0 if i == 0 || c == 0 { return 0 } // If exceeding the knapsack capacity, can only choose not to put it in the knapsack if wgt[i - 1] > c { return knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c) } // Calculate the maximum value of not putting in and putting in item i let no = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c) let yes = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c - wgt[i - 1]) + val[i - 1] // Return the greater value of the two options return max(no, yes) } /* 0-1 Knapsack: Memoized search */ func knapsackDFSMem(wgt: [Int], val: [Int], mem: inout [[Int]], i: Int, c: Int) -> Int { // If all items have been chosen or the knapsack has no remaining capacity, return value 0 if i == 0 || c == 0 { return 0 } // If there is a record, return it if mem[i][c] != -1 { return mem[i][c] } // If exceeding the knapsack capacity, can only choose not to put it in the knapsack if wgt[i - 1] > c { return knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c) } // Calculate the maximum value of not putting in and putting in item i let no = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c) let yes = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c - wgt[i - 1]) + val[i - 1] // Record and return the greater value of the two options mem[i][c] = max(no, yes) return mem[i][c] } /* 0-1 Knapsack: Dynamic programming */ func knapsackDP(wgt: [Int], val: [Int], cap: Int) -> Int { let n = wgt.count // Initialize dp table var dp = Array(repeating: Array(repeating: 0, count: cap + 1), count: n + 1) // State transition for i in 1 ... n { for c in 1 ... cap { if wgt[i - 1] > c { // If exceeding the knapsack capacity, do not choose item i dp[i][c] = dp[i - 1][c] } else { // The greater value between not choosing and choosing item i dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]) } } } return dp[n][cap] } /* 0-1 Knapsack: Space-optimized dynamic programming */ func knapsackDPComp(wgt: [Int], val: [Int], cap: Int) -> Int { let n = wgt.count // Initialize dp table var dp = Array(repeating: 0, count: cap + 1) // State transition for i in 1 ... n { // Traverse in reverse order for c in (1 ... cap).reversed() { if wgt[i - 1] <= c { // The greater value between not choosing and choosing item i dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]) } } } return dp[cap] } @main enum Knapsack { /* Driver Code */ static func main() { let wgt = [10, 20, 30, 40, 50] let val = [50, 120, 150, 210, 240] let cap = 50 let n = wgt.count // Brute force search var res = knapsackDFS(wgt: wgt, val: val, i: n, c: cap) print("Maximum value of items within the backpack capacity = \(res)") // Memoized search var mem = Array(repeating: Array(repeating: -1, count: cap + 1), count: n + 1) res = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: n, c: cap) print("Maximum value of items within the backpack capacity = \(res)") // Dynamic programming res = knapsackDP(wgt: wgt, val: val, cap: cap) print("Maximum value of items within the backpack capacity = \(res)") // Space-optimized dynamic programming res = knapsackDPComp(wgt: wgt, val: val, cap: cap) print("Maximum value of items within the backpack capacity = \(res)") } }