/** * File: avl_tree.kt * Created Time: 2024-01-25 * Author: curtishd (1023632660@qq.com) */ package chapter_tree import utils.TreeNode import utils.printTree import kotlin.math.max /* AVL tree */ class AVLTree { var root: TreeNode? = null // Root node /* Get node height */ fun height(node: TreeNode?): Int { // Empty node height is -1, leaf node height is 0 return node?.height ?: -1 } /* Update node height */ private fun updateHeight(node: TreeNode?) { // Node height equals the height of the tallest subtree + 1 node?.height = max(height(node?.left), height(node?.right)) + 1 } /* Get balance factor */ fun balanceFactor(node: TreeNode?): Int { // Empty node balance factor is 0 if (node == null) return 0 // Node balance factor = left subtree height - right subtree height return height(node.left) - height(node.right) } /* Right rotation operation */ private fun rightRotate(node: TreeNode?): TreeNode { val child = node!!.left val grandChild = child!!.right // Rotate node to the right around child child.right = node node.left = grandChild // Update node height updateHeight(node) updateHeight(child) // Return the root of the subtree after rotation return child } /* Left rotation operation */ private fun leftRotate(node: TreeNode?): TreeNode { val child = node!!.right val grandChild = child!!.left // Rotate node to the left around child child.left = node node.right = grandChild // Update node height updateHeight(node) updateHeight(child) // Return the root of the subtree after rotation return child } /* Perform rotation operation to restore balance to the subtree */ private fun rotate(node: TreeNode): TreeNode { // Get the balance factor of node val balanceFactor = balanceFactor(node) // Left-leaning tree if (balanceFactor > 1) { if (balanceFactor(node.left) >= 0) { // Right rotation return rightRotate(node) } else { // First left rotation then right rotation node.left = leftRotate(node.left) return rightRotate(node) } } // Right-leaning tree if (balanceFactor < -1) { if (balanceFactor(node.right) <= 0) { // Left rotation return leftRotate(node) } else { // First right rotation then left rotation node.right = rightRotate(node.right) return leftRotate(node) } } // Balanced tree, no rotation needed, return return node } /* Insert node */ fun insert(_val: Int) { root = insertHelper(root, _val) } /* Recursively insert node (helper method) */ private fun insertHelper(n: TreeNode?, _val: Int): TreeNode { if (n == null) return TreeNode(_val) var node = n /* 1. Find insertion position and insert node */ if (_val < node._val) node.left = insertHelper(node.left, _val) else if (_val > node._val) node.right = insertHelper(node.right, _val) else return node // Do not insert duplicate nodes, return updateHeight(node) // Update node height /* 2. Perform rotation operation to restore balance to the subtree */ node = rotate(node) // Return the root node of the subtree return node } /* Remove node */ fun remove(_val: Int) { root = removeHelper(root, _val) } /* Recursively remove node (helper method) */ private fun removeHelper(n: TreeNode?, _val: Int): TreeNode? { var node = n ?: return null /* 1. Find and remove the node */ if (_val < node._val) node.left = removeHelper(node.left, _val) else if (_val > node._val) node.right = removeHelper(node.right, _val) else { if (node.left == null || node.right == null) { val child = if (node.left != null) node.left else node.right // Number of child nodes = 0, remove node and return if (child == null) return null // Number of child nodes = 1, remove node else node = child } else { // Number of child nodes = 2, remove the next node in in-order traversal and replace the current node with it var temp = node.right while (temp!!.left != null) { temp = temp.left } node.right = removeHelper(node.right, temp._val) node._val = temp._val } } updateHeight(node) // Update node height /* 2. Perform rotation operation to restore balance to the subtree */ node = rotate(node) // Return the root node of the subtree return node } /* Search node */ fun search(_val: Int): TreeNode? { var cur = root // Loop find, break after passing leaf nodes while (cur != null) { // Target node is in cur's right subtree cur = if (cur._val < _val) cur.right!! // Target node is in cur's left subtree else if (cur._val > _val) cur.left // Found target node, break loop else break } // Return target node return cur } } fun testInsert(tree: AVLTree, _val: Int) { tree.insert(_val) println("\nAfter inserting node $_val, the AVL tree is") printTree(tree.root) } fun testRemove(tree: AVLTree, _val: Int) { tree.remove(_val) println("\nAfter removing node $_val, the AVL tree is") printTree(tree.root) } /* Driver Code */ fun main() { /* Initialize empty AVL tree */ val avlTree = AVLTree() /* Insert node */ // Notice how the AVL tree maintains balance after inserting nodes testInsert(avlTree, 1) testInsert(avlTree, 2) testInsert(avlTree, 3) testInsert(avlTree, 4) testInsert(avlTree, 5) testInsert(avlTree, 8) testInsert(avlTree, 7) testInsert(avlTree, 9) testInsert(avlTree, 10) testInsert(avlTree, 6) /* Insert duplicate node */ testInsert(avlTree, 7) /* Remove node */ // Notice how the AVL tree maintains balance after removing nodes testRemove(avlTree, 8) // Remove node with degree 0 testRemove(avlTree, 5) // Remove node with degree 1 testRemove(avlTree, 4) // Remove node with degree 2 /* Search node */ val node = avlTree.search(7) println("\nFound node object $node, node value = ${node?._val}") }