/** * File: knapsack.kt * Created Time: 2024-01-25 * Author: curtishd (1023632660@qq.com) */ package chapter_dynamic_programming import kotlin.math.max /* 0-1 Knapsack: Brute force search */ fun knapsackDFS( wgt: IntArray, _val: IntArray, i: Int, c: Int ): Int { // If all items have been chosen or the knapsack has no remaining capacity, return value 0 if (i == 0 || c == 0) { return 0 } // If exceeding the knapsack capacity, can only choose not to put it in the knapsack if (wgt[i - 1] > c) { return knapsackDFS(wgt, _val, i - 1, c) } // Calculate the maximum value of not putting in and putting in item i val no = knapsackDFS(wgt, _val, i - 1, c) val yes = knapsackDFS(wgt, _val, i - 1, c - wgt[i - 1]) + _val[i - 1] // Return the greater value of the two options return max(no, yes) } /* 0-1 Knapsack: Memoized search */ fun knapsackDFSMem( wgt: IntArray, _val: IntArray, mem: Array, i: Int, c: Int ): Int { // If all items have been chosen or the knapsack has no remaining capacity, return value 0 if (i == 0 || c == 0) { return 0 } // If there is a record, return it if (mem[i][c] != -1) { return mem[i][c] } // If exceeding the knapsack capacity, can only choose not to put it in the knapsack if (wgt[i - 1] > c) { return knapsackDFSMem(wgt, _val, mem, i - 1, c) } // Calculate the maximum value of not putting in and putting in item i val no = knapsackDFSMem(wgt, _val, mem, i - 1, c) val yes = knapsackDFSMem(wgt, _val, mem, i - 1, c - wgt[i - 1]) + _val[i - 1] // Record and return the greater value of the two options mem[i][c] = max(no, yes) return mem[i][c] } /* 0-1 Knapsack: Dynamic programming */ fun knapsackDP(wgt: IntArray, _val: IntArray, cap: Int): Int { val n = wgt.size // Initialize dp table val dp = Array(n + 1) { IntArray(cap + 1) } // State transition for (i in 1..n) { for (c in 1..cap) { if (wgt[i - 1] > c) { // If exceeding the knapsack capacity, do not choose item i dp[i][c] = dp[i - 1][c] } else { // The greater value between not choosing and choosing item i dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + _val[i - 1]) } } } return dp[n][cap] } /* 0-1 Knapsack: Space-optimized dynamic programming */ fun knapsackDPComp(wgt: IntArray, _val: IntArray, cap: Int): Int { val n = wgt.size // Initialize dp table val dp = IntArray(cap + 1) // State transition for (i in 1..n) { // Traverse in reverse order for (c in cap downTo 1) { if (wgt[i - 1] <= c) { // The greater value between not choosing and choosing item i dp[c] = max(dp[c], dp[c - wgt[i - 1]] + _val[i - 1]) } } } return dp[cap] } /* Driver Code */ fun main() { val wgt = intArrayOf(10, 20, 30, 40, 50) val _val = intArrayOf(50, 120, 150, 210, 240) val cap = 50 val n = wgt.size // Brute force search var res = knapsackDFS(wgt, _val, n, cap) println("Maximum value of items without exceeding bag capacity = $res") // Memoized search val mem = Array(n + 1) { IntArray(cap + 1) } for (row in mem) { row.fill(-1) } res = knapsackDFSMem(wgt, _val, mem, n, cap) println("Maximum value of items without exceeding bag capacity = $res") // Dynamic programming res = knapsackDP(wgt, _val, cap) println("Maximum value of items without exceeding bag capacity = $res") // Space-optimized dynamic programming res = knapsackDPComp(wgt, _val, cap) println("Maximum value of items without exceeding bag capacity = $res") }