/** * File: binary_search_insertion.js * Created Time: 2023-08-22 * Author: Gaofer Chou (gaofer-chou@qq.com) */ /* Binary search for insertion point (no duplicate elements) */ function binarySearchInsertionSimple(nums, target) { let i = 0, j = nums.length - 1; // Initialize double closed interval [0, n-1] while (i <= j) { const m = Math.floor(i + (j - i) / 2); // Calculate the midpoint index m, using Math.floor() to round down if (nums[m] < target) { i = m + 1; // Target is in interval [m+1, j] } else if (nums[m] > target) { j = m - 1; // Target is in interval [i, m-1] } else { return m; // Found target, return insertion point m } } // Did not find target, return insertion point i return i; } /* Binary search for insertion point (with duplicate elements) */ function binarySearchInsertion(nums, target) { let i = 0, j = nums.length - 1; // Initialize double closed interval [0, n-1] while (i <= j) { const m = Math.floor(i + (j - i) / 2); // Calculate the midpoint index m, using Math.floor() to round down if (nums[m] < target) { i = m + 1; // Target is in interval [m+1, j] } else if (nums[m] > target) { j = m - 1; // Target is in interval [i, m-1] } else { j = m - 1; // First element less than target is in interval [i, m-1] } } // Return insertion point i return i; } /* Driver Code */ // Array without duplicate elements let nums = [1, 3, 6, 8, 12, 15, 23, 26, 31, 35]; console.log('\nArray nums =' + nums); // Binary search for insertion point for (const target of [6, 9]) { const index = binarySearchInsertionSimple(nums, target); console.log('The insertion point index for element ' + target + ' is ' + index); } // Array with duplicate elements nums = [1, 3, 6, 6, 6, 6, 6, 10, 12, 15]; console.log('\nArray nums =' + nums); // Binary search for insertion point for (const target of [2, 6, 20]) { const index = binarySearchInsertion(nums, target); console.log('The insertion point index for element ' + target + ' is ' + index); } module.exports = { binarySearchInsertion, };