/** * File: min_path_sum.js * Created Time: 2023-08-23 * Author: Gaofer Chou (gaofer-chou@qq.com) */ /* Minimum path sum: Brute force search */ function minPathSumDFS(grid, i, j) { // If it's the top-left cell, terminate the search if (i === 0 && j === 0) { return grid[0][0]; } // If the row or column index is out of bounds, return a +∞ cost if (i < 0 || j < 0) { return Infinity; } // Calculate the minimum path cost from the top-left to (i-1, j) and (i, j-1) const up = minPathSumDFS(grid, i - 1, j); const left = minPathSumDFS(grid, i, j - 1); // Return the minimum path cost from the top-left to (i, j) return Math.min(left, up) + grid[i][j]; } /* Minimum path sum: Memoized search */ function minPathSumDFSMem(grid, mem, i, j) { // If it's the top-left cell, terminate the search if (i === 0 && j === 0) { return grid[0][0]; } // If the row or column index is out of bounds, return a +∞ cost if (i < 0 || j < 0) { return Infinity; } // If there is a record, return it if (mem[i][j] !== -1) { return mem[i][j]; } // The minimum path cost from the left and top cells const up = minPathSumDFSMem(grid, mem, i - 1, j); const left = minPathSumDFSMem(grid, mem, i, j - 1); // Record and return the minimum path cost from the top-left to (i, j) mem[i][j] = Math.min(left, up) + grid[i][j]; return mem[i][j]; } /* Minimum path sum: Dynamic programming */ function minPathSumDP(grid) { const n = grid.length, m = grid[0].length; // Initialize dp table const dp = Array.from({ length: n }, () => Array.from({ length: m }, () => 0) ); dp[0][0] = grid[0][0]; // State transition: first row for (let j = 1; j < m; j++) { dp[0][j] = dp[0][j - 1] + grid[0][j]; } // State transition: first column for (let i = 1; i < n; i++) { dp[i][0] = dp[i - 1][0] + grid[i][0]; } // State transition: the rest of the rows and columns for (let i = 1; i < n; i++) { for (let j = 1; j < m; j++) { dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]; } } return dp[n - 1][m - 1]; } /* Minimum Path Sum: Space-optimized dynamic programming */ function minPathSumDPComp(grid) { const n = grid.length, m = grid[0].length; // Initialize dp table const dp = new Array(m); // State transition: first row dp[0] = grid[0][0]; for (let j = 1; j < m; j++) { dp[j] = dp[j - 1] + grid[0][j]; } // State transition: the rest of the rows for (let i = 1; i < n; i++) { // State transition: first column dp[0] = dp[0] + grid[i][0]; // State transition: the rest of the columns for (let j = 1; j < m; j++) { dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j]; } } return dp[m - 1]; } /* Driver Code */ const grid = [ [1, 3, 1, 5], [2, 2, 4, 2], [5, 3, 2, 1], [4, 3, 5, 2], ]; const n = grid.length, m = grid[0].length; // Brute force search let res = minPathSumDFS(grid, n - 1, m - 1); console.log(`从左上角到右下角的最小路径和为 ${res}`); // Memoized search const mem = Array.from({ length: n }, () => Array.from({ length: m }, () => -1) ); res = minPathSumDFSMem(grid, mem, n - 1, m - 1); console.log(`从左上角到右下角的最小路径和为 ${res}`); // Dynamic programming res = minPathSumDP(grid); console.log(`从左上角到右下角的最小路径和为 ${res}`); // Space-optimized dynamic programming res = minPathSumDPComp(grid); console.log(`从左上角到右下角的最小路径和为 ${res}`);