/** * File: time_complexity.js * Created Time: 2023-01-02 * Author: RiverTwilight (contact@rene.wang) */ /* Constant complexity */ function constant(n) { let count = 0; const size = 100000; for (let i = 0; i < size; i++) count++; return count; } /* Linear complexity */ function linear(n) { let count = 0; for (let i = 0; i < n; i++) count++; return count; } /* Linear complexity (traversing an array) */ function arrayTraversal(nums) { let count = 0; // Loop count is proportional to the length of the array for (let i = 0; i < nums.length; i++) { count++; } return count; } /* Quadratic complexity */ function quadratic(n) { let count = 0; // Loop count is squared in relation to the data size n for (let i = 0; i < n; i++) { for (let j = 0; j < n; j++) { count++; } } return count; } /* Quadratic complexity (bubble sort) */ function bubbleSort(nums) { let count = 0; // Counter // Outer loop: unsorted range is [0, i] for (let i = nums.length - 1; i > 0; i--) { // Inner loop: swap the largest element in the unsorted range [0, i] to the right end of the range for (let j = 0; j < i; j++) { if (nums[j] > nums[j + 1]) { // Swap nums[j] and nums[j + 1] let tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; count += 3; // Element swap includes 3 individual operations } } } return count; } /* Exponential complexity (loop implementation) */ function exponential(n) { let count = 0, base = 1; // Cells split into two every round, forming the sequence 1, 2, 4, 8, ..., 2^(n-1) for (let i = 0; i < n; i++) { for (let j = 0; j < base; j++) { count++; } base *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } /* Exponential complexity (recursive implementation) */ function expRecur(n) { if (n === 1) return 1; return expRecur(n - 1) + expRecur(n - 1) + 1; } /* Logarithmic complexity (loop implementation) */ function logarithmic(n) { let count = 0; while (n > 1) { n = n / 2; count++; } return count; } /* Logarithmic complexity (recursive implementation) */ function logRecur(n) { if (n <= 1) return 0; return logRecur(n / 2) + 1; } /* Linear logarithmic complexity */ function linearLogRecur(n) { if (n <= 1) return 1; let count = linearLogRecur(n / 2) + linearLogRecur(n / 2); for (let i = 0; i < n; i++) { count++; } return count; } /* Factorial complexity (recursive implementation) */ function factorialRecur(n) { if (n === 0) return 1; let count = 0; // From 1 split into n for (let i = 0; i < n; i++) { count += factorialRecur(n - 1); } return count; } /* Driver Code */ // Can modify n to experience the trend of operation count changes under various complexities const n = 8; console.log('Input data size n =' + n); let count = constant(n); console.log('Number of constant complexity operations =' + count); count = linear(n); console.log('Number of linear complexity operations =' + count); count = arrayTraversal(new Array(n)); console.log('Number of linear complexity operations (traversing the array) =' + count); count = quadratic(n); console.log('Number of quadratic order operations =' + count); let nums = new Array(n); for (let i = 0; i < n; i++) nums[i] = n - i; // [n,n-1,...,2,1] count = bubbleSort(nums); console.log('Number of quadratic order operations (bubble sort) =' + count); count = exponential(n); console.log('Number of exponential complexity operations (implemented by loop) =' + count); count = expRecur(n); console.log('Number of exponential complexity operations (implemented by recursion) =' + count); count = logarithmic(n); console.log('Number of logarithmic complexity operations (implemented by loop) =' + count); count = logRecur(n); console.log('Number of logarithmic complexity operations (implemented by recursion) =' + count); count = linearLogRecur(n); console.log('Number of linear logarithmic complexity operations (implemented by recursion) =' + count); count = factorialRecur(n); console.log('Number of factorial complexity operations (implemented by recursion) =' + count);