/** * File: array_deque.dart * Created Time: 2023-03-28 * Author: liuyuxin (gvenusleo@gmail.com) */ /* Double-ended queue class based on circular array */ class ArrayDeque { late List _nums; // Array used to store elements of the double-ended queue late int _front; // Front pointer, pointing to the front element late int _queSize; // Length of the double-ended queue /* Constructor */ ArrayDeque(int capacity) { this._nums = List.filled(capacity, 0); this._front = this._queSize = 0; } /* Get the capacity of the double-ended queue */ int capacity() { return _nums.length; } /* Get the length of the double-ended queue */ int size() { return _queSize; } /* Determine if the double-ended queue is empty */ bool isEmpty() { return _queSize == 0; } /* Calculate circular array index */ int index(int i) { // Implement circular array by modulo operation // When i exceeds the tail of the array, return to the head // When i exceeds the head of the array, return to the tail return (i + capacity()) % capacity(); } /* Front enqueue */ void pushFirst(int _num) { if (_queSize == capacity()) { throw Exception("Double-ended queue is full"); } // Move the front pointer one position to the left // Implement _front crossing the head of the array back to the end by modulo operation _front = index(_front - 1); // Add _num to the front of the queue _nums[_front] = _num; _queSize++; } /* Rear enqueue */ void pushLast(int _num) { if (_queSize == capacity()) { throw Exception("Double-ended queue is full"); } // Calculate rear pointer, pointing to rear index + 1 int rear = index(_front + _queSize); // Add _num to the back of the queue _nums[rear] = _num; _queSize++; } /* Front dequeue */ int popFirst() { int _num = peekFirst(); // Move the front pointer right by one _front = index(_front + 1); _queSize--; return _num; } /* Rear dequeue */ int popLast() { int _num = peekLast(); _queSize--; return _num; } /* Access front element */ int peekFirst() { if (isEmpty()) { throw Exception("Double-ended queue is empty"); } return _nums[_front]; } /* Access rear element */ int peekLast() { if (isEmpty()) { throw Exception("Double-ended queue is empty"); } // Calculate rear element index int last = index(_front + _queSize - 1); return _nums[last]; } /* Return array for printing */ List toArray() { // Only convert elements within valid length range List res = List.filled(_queSize, 0); for (int i = 0, j = _front; i < _queSize; i++, j++) { res[i] = _nums[index(j)]; } return res; } } /* Driver Code */ void main() { /* Initialize double-ended queue */ final ArrayDeque deque = ArrayDeque(10); deque.pushLast(3); deque.pushLast(2); deque.pushLast(5); print("Double-ended queue deque = ${deque.toArray()}"); /* Access element */ final int peekFirst = deque.peekFirst(); print("Front element peekFirst = $peekFirst"); final int peekLast = deque.peekLast(); print("Back element peekLast = $peekLast"); /* Element enqueue */ deque.pushLast(4); print("Element 4 enqueued at the back, deque = ${deque.toArray()}"); deque.pushFirst(1); print("Element 1 enqueued at the front, deque = ${deque.toArray()}"); /* Element dequeue */ final int popLast = deque.popLast(); print("Back dequeue element = $popLast, deque after back dequeue = ${deque.toArray()}"); final int popFirst = deque.popFirst(); print("Front dequeue element = $popFirst, deque after front dequeue = ${deque.toArray()}"); /* Get the length of the double-ended queue */ final int size = deque.size(); print("Double-ended queue length size = $size"); /* Determine if the double-ended queue is empty */ final bool isEmpty = deque.isEmpty(); print("Is the double-ended queue empty = $isEmpty"); }